| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtoptopon | Structured version Visualization version GIF version | ||
| Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| qtoptopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22851 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | toponuni 22852 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 3 | foeq2 6787 | . . . . . 6 ⊢ (𝑋 = ∪ 𝐽 → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) |
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:∪ 𝐽–onto→𝑌) |
| 6 | fofn 6792 | . . . 4 ⊢ (𝐹:∪ 𝐽–onto→𝑌 → 𝐹 Fn ∪ 𝐽) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹 Fn ∪ 𝐽) |
| 8 | eqid 2735 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | qtoptop 23638 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn ∪ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
| 10 | 1, 7, 9 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
| 11 | 8 | qtopuni 23640 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:∪ 𝐽–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 12 | 1, 5, 11 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 13 | istopon 22850 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = ∪ (𝐽 qTop 𝐹))) | |
| 14 | 10, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cuni 4883 Fn wfn 6526 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 qTop cqtop 17517 Topctop 22831 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-qtop 17521 df-top 22832 df-topon 22849 |
| This theorem is referenced by: qtopid 23643 qtopcld 23651 qtopcn 23652 qtopeu 23654 qtoprest 23655 imastps 23659 kqtopon 23665 qtopf1 23754 qtophmeo 23755 qustgplem 24059 qtophaus 33867 |
| Copyright terms: Public domain | W3C validator |