MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptopon Structured version   Visualization version   GIF version

Theorem qtoptopon 23619
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
qtoptopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))

Proof of Theorem qtoptopon
StepHypRef Expression
1 topontop 22828 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 toponuni 22829 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 foeq2 6732 . . . . . 6 (𝑋 = 𝐽 → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
54biimpa 476 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹: 𝐽onto𝑌)
6 fofn 6737 . . . 4 (𝐹: 𝐽onto𝑌𝐹 Fn 𝐽)
75, 6syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹 Fn 𝐽)
8 eqid 2731 . . . 4 𝐽 = 𝐽
98qtoptop 23615 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝐽) → (𝐽 qTop 𝐹) ∈ Top)
101, 7, 9syl2an2r 685 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ Top)
118qtopuni 23617 . . 3 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
121, 5, 11syl2an2r 685 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
13 istopon 22827 . 2 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = (𝐽 qTop 𝐹)))
1410, 12, 13sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   cuni 4856   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346   qTop cqtop 17407  Topctop 22808  TopOnctopon 22825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-qtop 17411  df-top 22809  df-topon 22826
This theorem is referenced by:  qtopid  23620  qtopcld  23628  qtopcn  23629  qtopeu  23631  qtoprest  23632  imastps  23636  kqtopon  23642  qtopf1  23731  qtophmeo  23732  qustgplem  24036  qtophaus  33849
  Copyright terms: Public domain W3C validator