![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtoptopon | Structured version Visualization version GIF version |
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
qtoptopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 21047 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
2 | foeq2 6328 | . . . . . 6 ⊢ (𝑋 = ∪ 𝐽 → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) |
4 | 3 | biimpa 469 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:∪ 𝐽–onto→𝑌) |
5 | fofn 6333 | . . . 4 ⊢ (𝐹:∪ 𝐽–onto→𝑌 → 𝐹 Fn ∪ 𝐽) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹 Fn ∪ 𝐽) |
7 | topontop 21046 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
8 | eqid 2799 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
9 | 8 | qtoptop 21832 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn ∪ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
10 | 7, 9 | sylan 576 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn ∪ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
11 | 6, 10 | syldan 586 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
12 | 8 | qtopuni 21834 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:∪ 𝐽–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
13 | 7, 12 | sylan 576 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:∪ 𝐽–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
14 | 4, 13 | syldan 586 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
15 | istopon 21045 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = ∪ (𝐽 qTop 𝐹))) | |
16 | 11, 14, 15 | sylanbrc 579 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∪ cuni 4628 Fn wfn 6096 –onto→wfo 6099 ‘cfv 6101 (class class class)co 6878 qTop cqtop 16478 Topctop 21026 TopOnctopon 21043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-qtop 16482 df-top 21027 df-topon 21044 |
This theorem is referenced by: qtopid 21837 qtopcld 21845 qtopcn 21846 qtopeu 21848 qtoprest 21849 imastps 21853 kqtopon 21859 qtopf1 21948 qtophmeo 21949 qustgplem 22252 qtophaus 30419 |
Copyright terms: Public domain | W3C validator |