MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptopon Structured version   Visualization version   GIF version

Theorem qtoptopon 23712
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
qtoptopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))

Proof of Theorem qtoptopon
StepHypRef Expression
1 topontop 22919 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 toponuni 22920 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 foeq2 6817 . . . . . 6 (𝑋 = 𝐽 → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
54biimpa 476 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹: 𝐽onto𝑌)
6 fofn 6822 . . . 4 (𝐹: 𝐽onto𝑌𝐹 Fn 𝐽)
75, 6syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹 Fn 𝐽)
8 eqid 2737 . . . 4 𝐽 = 𝐽
98qtoptop 23708 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝐽) → (𝐽 qTop 𝐹) ∈ Top)
101, 7, 9syl2an2r 685 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ Top)
118qtopuni 23710 . . 3 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
121, 5, 11syl2an2r 685 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
13 istopon 22918 . 2 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = (𝐽 qTop 𝐹)))
1410, 12, 13sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   cuni 4907   Fn wfn 6556  ontowfo 6559  cfv 6561  (class class class)co 7431   qTop cqtop 17548  Topctop 22899  TopOnctopon 22916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-qtop 17552  df-top 22900  df-topon 22917
This theorem is referenced by:  qtopid  23713  qtopcld  23721  qtopcn  23722  qtopeu  23724  qtoprest  23725  imastps  23729  kqtopon  23735  qtopf1  23824  qtophmeo  23825  qustgplem  24129  qtophaus  33835
  Copyright terms: Public domain W3C validator