| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtoptopon | Structured version Visualization version GIF version | ||
| Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| qtoptopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22807 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | toponuni 22808 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 3 | foeq2 6772 | . . . . . 6 ⊢ (𝑋 = ∪ 𝐽 → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) |
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:∪ 𝐽–onto→𝑌) |
| 6 | fofn 6777 | . . . 4 ⊢ (𝐹:∪ 𝐽–onto→𝑌 → 𝐹 Fn ∪ 𝐽) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹 Fn ∪ 𝐽) |
| 8 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | qtoptop 23594 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn ∪ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
| 10 | 1, 7, 9 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
| 11 | 8 | qtopuni 23596 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:∪ 𝐽–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 12 | 1, 5, 11 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 13 | istopon 22806 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = ∪ (𝐽 qTop 𝐹))) | |
| 14 | 10, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4874 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 qTop cqtop 17473 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-qtop 17477 df-top 22788 df-topon 22805 |
| This theorem is referenced by: qtopid 23599 qtopcld 23607 qtopcn 23608 qtopeu 23610 qtoprest 23611 imastps 23615 kqtopon 23621 qtopf1 23710 qtophmeo 23711 qustgplem 24015 qtophaus 33833 |
| Copyright terms: Public domain | W3C validator |