MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptopon Structured version   Visualization version   GIF version

Theorem qtoptopon 22230
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
qtoptopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))

Proof of Theorem qtoptopon
StepHypRef Expression
1 topontop 21439 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 toponuni 21440 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 foeq2 6583 . . . . . 6 (𝑋 = 𝐽 → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
54biimpa 477 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹: 𝐽onto𝑌)
6 fofn 6588 . . . 4 (𝐹: 𝐽onto𝑌𝐹 Fn 𝐽)
75, 6syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹 Fn 𝐽)
8 eqid 2825 . . . 4 𝐽 = 𝐽
98qtoptop 22226 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝐽) → (𝐽 qTop 𝐹) ∈ Top)
101, 7, 9syl2an2r 681 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ Top)
118qtopuni 22228 . . 3 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
121, 5, 11syl2an2r 681 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
13 istopon 21438 . 2 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = (𝐽 qTop 𝐹)))
1410, 12, 13sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107   cuni 4836   Fn wfn 6346  ontowfo 6349  cfv 6351  (class class class)co 7151   qTop cqtop 16768  Topctop 21419  TopOnctopon 21436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-qtop 16772  df-top 21420  df-topon 21437
This theorem is referenced by:  qtopid  22231  qtopcld  22239  qtopcn  22240  qtopeu  22242  qtoprest  22243  imastps  22247  kqtopon  22253  qtopf1  22342  qtophmeo  22343  qustgplem  22646  qtophaus  30988
  Copyright terms: Public domain W3C validator