| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtoptopon | Structured version Visualization version GIF version | ||
| Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| qtoptopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22919 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | toponuni 22920 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 3 | foeq2 6817 | . . . . . 6 ⊢ (𝑋 = ∪ 𝐽 → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋–onto→𝑌 ↔ 𝐹:∪ 𝐽–onto→𝑌)) |
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:∪ 𝐽–onto→𝑌) |
| 6 | fofn 6822 | . . . 4 ⊢ (𝐹:∪ 𝐽–onto→𝑌 → 𝐹 Fn ∪ 𝐽) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝐹 Fn ∪ 𝐽) |
| 8 | eqid 2737 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | qtoptop 23708 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn ∪ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
| 10 | 1, 7, 9 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
| 11 | 8 | qtopuni 23710 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:∪ 𝐽–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 12 | 1, 5, 11 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 13 | istopon 22918 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = ∪ (𝐽 qTop 𝐹))) | |
| 14 | 10, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cuni 4907 Fn wfn 6556 –onto→wfo 6559 ‘cfv 6561 (class class class)co 7431 qTop cqtop 17548 Topctop 22899 TopOnctopon 22916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-qtop 17552 df-top 22900 df-topon 22917 |
| This theorem is referenced by: qtopid 23713 qtopcld 23721 qtopcn 23722 qtopeu 23724 qtoprest 23725 imastps 23729 kqtopon 23735 qtopf1 23824 qtophmeo 23825 qustgplem 24129 qtophaus 33835 |
| Copyright terms: Public domain | W3C validator |