MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptopon Structured version   Visualization version   GIF version

Theorem qtoptopon 23530
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
qtoptopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))

Proof of Theorem qtoptopon
StepHypRef Expression
1 topontop 22737 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 toponuni 22738 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 foeq2 6792 . . . . . 6 (𝑋 = 𝐽 → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋onto𝑌𝐹: 𝐽onto𝑌))
54biimpa 476 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹: 𝐽onto𝑌)
6 fofn 6797 . . . 4 (𝐹: 𝐽onto𝑌𝐹 Fn 𝐽)
75, 6syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝐹 Fn 𝐽)
8 eqid 2724 . . . 4 𝐽 = 𝐽
98qtoptop 23526 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝐽) → (𝐽 qTop 𝐹) ∈ Top)
101, 7, 9syl2an2r 682 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ Top)
118qtopuni 23528 . . 3 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
121, 5, 11syl2an2r 682 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
13 istopon 22736 . 2 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ 𝑌 = (𝐽 qTop 𝐹)))
1410, 12, 13sylanbrc 582 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   cuni 4899   Fn wfn 6528  ontowfo 6531  cfv 6533  (class class class)co 7401   qTop cqtop 17448  Topctop 22717  TopOnctopon 22734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-qtop 17452  df-top 22718  df-topon 22735
This theorem is referenced by:  qtopid  23531  qtopcld  23539  qtopcn  23540  qtopeu  23542  qtoprest  23543  imastps  23547  kqtopon  23553  qtopf1  23642  qtophmeo  23643  qustgplem  23947  qtophaus  33305
  Copyright terms: Public domain W3C validator