MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmpb Structured version   Visualization version   GIF version

Theorem txcmpb 23537
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmpb.1 𝑋 = 𝑅
txcmpb.2 𝑌 = 𝑆
Assertion
Ref Expression
txcmpb (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))

Proof of Theorem txcmpb
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
2 simplrr 777 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑌 ≠ ∅)
3 fo1stres 7996 . . . . . . 7 (𝑌 ≠ ∅ → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
42, 3syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
5 txcmpb.1 . . . . . . . . 9 𝑋 = 𝑅
6 txcmpb.2 . . . . . . . . 9 𝑌 = 𝑆
75, 6txuni 23485 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
87ad2antrr 726 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
9 foeq2 6771 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
108, 9syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
114, 10mpbid 232 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋)
125toptopon 22810 . . . . . . 7 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
136toptopon 22810 . . . . . . 7 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
14 tx1cn 23502 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1512, 13, 14syl2anb 598 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1615ad2antrr 726 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
175cncmp 23285 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋 ∧ (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → 𝑅 ∈ Comp)
181, 11, 16, 17syl3anc 1373 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑅 ∈ Comp)
19 simplrl 776 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑋 ≠ ∅)
20 fo2ndres 7997 . . . . . . 7 (𝑋 ≠ ∅ → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
2119, 20syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
22 foeq2 6771 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
238, 22syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
2421, 23mpbid 232 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌)
25 tx2cn 23503 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2612, 13, 25syl2anb 598 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2726ad2antrr 726 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
286cncmp 23285 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌 ∧ (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → 𝑆 ∈ Comp)
291, 24, 27, 28syl3anc 1373 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑆 ∈ Comp)
3018, 29jca 511 . . 3 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))
3130ex 412 . 2 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
32 txcmp 23536 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
3331, 32impbid1 225 1 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  c0 4298   cuni 4873   × cxp 5638  cres 5642  ontowfo 6511  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Topctop 22786  TopOnctopon 22803   Cn ccn 23117  Compccmp 23279   ×t ctx 23453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-1o 8436  df-2o 8437  df-map 8803  df-en 8921  df-dom 8922  df-fin 8924  df-topgen 17412  df-top 22787  df-topon 22804  df-bases 22839  df-cn 23120  df-cmp 23280  df-tx 23455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator