MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmpb Structured version   Visualization version   GIF version

Theorem txcmpb 23677
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmpb.1 𝑋 = 𝑅
txcmpb.2 𝑌 = 𝑆
Assertion
Ref Expression
txcmpb (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))

Proof of Theorem txcmpb
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
2 simplrr 778 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑌 ≠ ∅)
3 fo1stres 8048 . . . . . . 7 (𝑌 ≠ ∅ → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
42, 3syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
5 txcmpb.1 . . . . . . . . 9 𝑋 = 𝑅
6 txcmpb.2 . . . . . . . . 9 𝑌 = 𝑆
75, 6txuni 23625 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
87ad2antrr 726 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
9 foeq2 6825 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
108, 9syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
114, 10mpbid 232 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋)
125toptopon 22948 . . . . . . 7 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
136toptopon 22948 . . . . . . 7 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
14 tx1cn 23642 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1512, 13, 14syl2anb 598 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1615ad2antrr 726 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
175cncmp 23425 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋 ∧ (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → 𝑅 ∈ Comp)
181, 11, 16, 17syl3anc 1372 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑅 ∈ Comp)
19 simplrl 777 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑋 ≠ ∅)
20 fo2ndres 8049 . . . . . . 7 (𝑋 ≠ ∅ → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
2119, 20syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
22 foeq2 6825 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
238, 22syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
2421, 23mpbid 232 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌)
25 tx2cn 23643 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2612, 13, 25syl2anb 598 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2726ad2antrr 726 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
286cncmp 23425 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌 ∧ (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → 𝑆 ∈ Comp)
291, 24, 27, 28syl3anc 1372 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑆 ∈ Comp)
3018, 29jca 511 . . 3 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))
3130ex 412 . 2 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
32 txcmp 23676 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
3331, 32impbid1 225 1 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wne 2940  c0 4342   cuni 4915   × cxp 5691  cres 5695  ontowfo 6567  cfv 6569  (class class class)co 7438  1st c1st 8020  2nd c2nd 8021  Topctop 22924  TopOnctopon 22941   Cn ccn 23257  Compccmp 23419   ×t ctx 23593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-1o 8514  df-2o 8515  df-map 8876  df-en 8994  df-dom 8995  df-fin 8997  df-topgen 17499  df-top 22925  df-topon 22942  df-bases 22978  df-cn 23260  df-cmp 23420  df-tx 23595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator