MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmpb Structured version   Visualization version   GIF version

Theorem txcmpb 23598
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmpb.1 𝑋 = 𝑅
txcmpb.2 𝑌 = 𝑆
Assertion
Ref Expression
txcmpb (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))

Proof of Theorem txcmpb
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
2 simplrr 777 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑌 ≠ ∅)
3 fo1stres 8022 . . . . . . 7 (𝑌 ≠ ∅ → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
42, 3syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
5 txcmpb.1 . . . . . . . . 9 𝑋 = 𝑅
6 txcmpb.2 . . . . . . . . 9 𝑌 = 𝑆
75, 6txuni 23546 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
87ad2antrr 726 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
9 foeq2 6797 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
108, 9syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
114, 10mpbid 232 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋)
125toptopon 22871 . . . . . . 7 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
136toptopon 22871 . . . . . . 7 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
14 tx1cn 23563 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1512, 13, 14syl2anb 598 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1615ad2antrr 726 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
175cncmp 23346 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋 ∧ (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → 𝑅 ∈ Comp)
181, 11, 16, 17syl3anc 1372 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑅 ∈ Comp)
19 simplrl 776 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑋 ≠ ∅)
20 fo2ndres 8023 . . . . . . 7 (𝑋 ≠ ∅ → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
2119, 20syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
22 foeq2 6797 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
238, 22syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
2421, 23mpbid 232 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌)
25 tx2cn 23564 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2612, 13, 25syl2anb 598 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2726ad2antrr 726 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
286cncmp 23346 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌 ∧ (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → 𝑆 ∈ Comp)
291, 24, 27, 28syl3anc 1372 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑆 ∈ Comp)
3018, 29jca 511 . . 3 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))
3130ex 412 . 2 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
32 txcmp 23597 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
3331, 32impbid1 225 1 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  c0 4313   cuni 4887   × cxp 5663  cres 5667  ontowfo 6539  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  Topctop 22847  TopOnctopon 22864   Cn ccn 23178  Compccmp 23340   ×t ctx 23514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-1o 8488  df-2o 8489  df-map 8850  df-en 8968  df-dom 8969  df-fin 8971  df-topgen 17459  df-top 22848  df-topon 22865  df-bases 22900  df-cn 23181  df-cmp 23341  df-tx 23516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator