Proof of Theorem txcmpb
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp) |
| 2 | | simplrr 777 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑌 ≠ ∅) |
| 3 | | fo1stres 8022 |
. . . . . . 7
⊢ (𝑌 ≠ ∅ →
(1st ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑋) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(1st ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑋) |
| 5 | | txcmpb.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝑅 |
| 6 | | txcmpb.2 |
. . . . . . . . 9
⊢ 𝑌 = ∪
𝑆 |
| 7 | 5, 6 | txuni 23546 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 8 | 7 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 9 | | foeq2 6797 |
. . . . . . 7
⊢ ((𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) → ((1st
↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑋 ↔ (1st ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑋)) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
((1st ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑋 ↔ (1st ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑋)) |
| 11 | 4, 10 | mpbid 232 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(1st ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑋) |
| 12 | 5 | toptopon 22871 |
. . . . . . 7
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
| 13 | 6 | toptopon 22871 |
. . . . . . 7
⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
| 14 | | tx1cn 23563 |
. . . . . . 7
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
| 15 | 12, 13, 14 | syl2anb 598 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(1st ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
| 16 | 15 | ad2antrr 726 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(1st ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
| 17 | 5 | cncmp 23346 |
. . . . 5
⊢ (((𝑅 ×t 𝑆) ∈ Comp ∧
(1st ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑋 ∧ (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → 𝑅 ∈ Comp) |
| 18 | 1, 11, 16, 17 | syl3anc 1372 |
. . . 4
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑅 ∈ Comp) |
| 19 | | simplrl 776 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑋 ≠ ∅) |
| 20 | | fo2ndres 8023 |
. . . . . . 7
⊢ (𝑋 ≠ ∅ →
(2nd ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑌) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(2nd ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑌) |
| 22 | | foeq2 6797 |
. . . . . . 7
⊢ ((𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) → ((2nd
↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑌)) |
| 23 | 8, 22 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
((2nd ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑌)) |
| 24 | 21, 23 | mpbid 232 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(2nd ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑌) |
| 25 | | tx2cn 23564 |
. . . . . . 7
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
| 26 | 12, 13, 25 | syl2anb 598 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(2nd ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
| 27 | 26 | ad2antrr 726 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(2nd ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
| 28 | 6 | cncmp 23346 |
. . . . 5
⊢ (((𝑅 ×t 𝑆) ∈ Comp ∧
(2nd ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑌 ∧ (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → 𝑆 ∈ Comp) |
| 29 | 1, 24, 27, 28 | syl3anc 1372 |
. . . 4
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑆 ∈ Comp) |
| 30 | 18, 29 | jca 511 |
. . 3
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)) |
| 31 | 30 | ex 412 |
. 2
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))) |
| 32 | | txcmp 23597 |
. 2
⊢ ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp) |
| 33 | 31, 32 | impbid1 225 |
1
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))) |