MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ramcl Structured version   Visualization version   GIF version

Theorem 0ramcl 17025
Description: Lemma for ramcl 17031: Existence of the Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
0ramcl ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem 0ramcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6728 . . . . . . . 8 (𝐹:𝑅⟶ℕ0𝐹 Fn 𝑅)
2 dffn4 6821 . . . . . . . 8 (𝐹 Fn 𝑅𝐹:𝑅onto→ran 𝐹)
31, 2sylib 217 . . . . . . 7 (𝐹:𝑅⟶ℕ0𝐹:𝑅onto→ran 𝐹)
43ad2antlr 725 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:𝑅onto→ran 𝐹)
5 foeq2 6812 . . . . . . 7 (𝑅 = ∅ → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
65adantl 480 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
74, 6mpbid 231 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:∅–onto→ran 𝐹)
8 fo00 6879 . . . . . 6 (𝐹:∅–onto→ran 𝐹 ↔ (𝐹 = ∅ ∧ ran 𝐹 = ∅))
98simplbi 496 . . . . 5 (𝐹:∅–onto→ran 𝐹𝐹 = ∅)
107, 9syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹 = ∅)
1110oveq2d 7440 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) = (0 Ramsey ∅))
12 0nn0 12539 . . . . 5 0 ∈ ℕ0
13 ram0 17024 . . . . 5 (0 ∈ ℕ0 → (0 Ramsey ∅) = 0)
1412, 13ax-mp 5 . . . 4 (0 Ramsey ∅) = 0
1514, 12eqeltri 2822 . . 3 (0 Ramsey ∅) ∈ ℕ0
1611, 15eqeltrdi 2834 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
17 0ram2 17023 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ))
18 frn 6735 . . . . . . 7 (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0)
19183ad2ant3 1132 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0)
20 nn0ssz 12633 . . . . . . . 8 0 ⊆ ℤ
2119, 20sstrdi 3992 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ)
22 fdm 6737 . . . . . . . . . 10 (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅)
23223ad2ant3 1132 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅)
24 simp2 1134 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅)
2523, 24eqnetrd 2998 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅)
26 dm0rn0 5931 . . . . . . . . 9 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2726necon3bii 2983 . . . . . . . 8 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2825, 27sylib 217 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅)
29 nn0ssre 12528 . . . . . . . . . 10 0 ⊆ ℝ
3019, 29sstrdi 3992 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ)
31 simp1 1133 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin)
3233ad2ant3 1132 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅onto→ran 𝐹)
33 fofi 9353 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝐹:𝑅onto→ran 𝐹) → ran 𝐹 ∈ Fin)
3431, 32, 33syl2anc 582 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin)
35 fimaxre 12210 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
3630, 34, 28, 35syl3anc 1368 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
37 ssrexv 4049 . . . . . . . 8 (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
3821, 36, 37sylc 65 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
39 suprzcl2 12974 . . . . . . 7 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4021, 28, 38, 39syl3anc 1368 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4119, 40sseldd 3980 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ℕ0)
4217, 41eqeltrd 2826 . . . 4 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
43423expa 1115 . . 3 (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅) ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
4443an32s 650 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
4516, 44pm2.61dane 3019 1 ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  wss 3947  c0 4325   class class class wbr 5153  dom cdm 5682  ran crn 5683   Fn wfn 6549  wf 6550  ontowfo 6552  (class class class)co 7424  Fincfn 8974  supcsup 9483  cr 11157  0cc0 11158   < clt 11298  cle 11299  0cn0 12524  cz 12610   Ramsey cram 17001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-seq 14022  df-fac 14291  df-bc 14320  df-hash 14348  df-ram 17003
This theorem is referenced by:  ramcl  17031
  Copyright terms: Public domain W3C validator