MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ramcl Structured version   Visualization version   GIF version

Theorem 0ramcl 16970
Description: Lemma for ramcl 16976: Existence of the Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
0ramcl ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem 0ramcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6670 . . . . . . . 8 (𝐹:𝑅⟶ℕ0𝐹 Fn 𝑅)
2 dffn4 6760 . . . . . . . 8 (𝐹 Fn 𝑅𝐹:𝑅onto→ran 𝐹)
31, 2sylib 218 . . . . . . 7 (𝐹:𝑅⟶ℕ0𝐹:𝑅onto→ran 𝐹)
43ad2antlr 727 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:𝑅onto→ran 𝐹)
5 foeq2 6751 . . . . . . 7 (𝑅 = ∅ → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
65adantl 481 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
74, 6mpbid 232 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:∅–onto→ran 𝐹)
8 fo00 6818 . . . . . 6 (𝐹:∅–onto→ran 𝐹 ↔ (𝐹 = ∅ ∧ ran 𝐹 = ∅))
98simplbi 497 . . . . 5 (𝐹:∅–onto→ran 𝐹𝐹 = ∅)
107, 9syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹 = ∅)
1110oveq2d 7385 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) = (0 Ramsey ∅))
12 0nn0 12433 . . . . 5 0 ∈ ℕ0
13 ram0 16969 . . . . 5 (0 ∈ ℕ0 → (0 Ramsey ∅) = 0)
1412, 13ax-mp 5 . . . 4 (0 Ramsey ∅) = 0
1514, 12eqeltri 2824 . . 3 (0 Ramsey ∅) ∈ ℕ0
1611, 15eqeltrdi 2836 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
17 0ram2 16968 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ))
18 frn 6677 . . . . . . 7 (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0)
19183ad2ant3 1135 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0)
20 nn0ssz 12528 . . . . . . . 8 0 ⊆ ℤ
2119, 20sstrdi 3956 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ)
22 fdm 6679 . . . . . . . . . 10 (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅)
23223ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅)
24 simp2 1137 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅)
2523, 24eqnetrd 2992 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅)
26 dm0rn0 5878 . . . . . . . . 9 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2726necon3bii 2977 . . . . . . . 8 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2825, 27sylib 218 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅)
29 nn0ssre 12422 . . . . . . . . . 10 0 ⊆ ℝ
3019, 29sstrdi 3956 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ)
31 simp1 1136 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin)
3233ad2ant3 1135 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅onto→ran 𝐹)
33 fofi 9238 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝐹:𝑅onto→ran 𝐹) → ran 𝐹 ∈ Fin)
3431, 32, 33syl2anc 584 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin)
35 fimaxre 12103 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
3630, 34, 28, 35syl3anc 1373 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
37 ssrexv 4013 . . . . . . . 8 (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
3821, 36, 37sylc 65 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
39 suprzcl2 12873 . . . . . . 7 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4021, 28, 38, 39syl3anc 1373 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4119, 40sseldd 3944 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ℕ0)
4217, 41eqeltrd 2828 . . . 4 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
43423expa 1118 . . 3 (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅) ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
4443an32s 652 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
4516, 44pm2.61dane 3012 1 ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  c0 4292   class class class wbr 5102  dom cdm 5631  ran crn 5632   Fn wfn 6494  wf 6495  ontowfo 6497  (class class class)co 7369  Fincfn 8895  supcsup 9367  cr 11043  0cc0 11044   < clt 11184  cle 11185  0cn0 12418  cz 12505   Ramsey cram 16946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-fac 14215  df-bc 14244  df-hash 14272  df-ram 16948
This theorem is referenced by:  ramcl  16976
  Copyright terms: Public domain W3C validator