MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ramcl Structured version   Visualization version   GIF version

Theorem 0ramcl 16821
Description: Lemma for ramcl 16827: Existence of the Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
0ramcl ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem 0ramcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6651 . . . . . . . 8 (𝐹:𝑅⟶ℕ0𝐹 Fn 𝑅)
2 dffn4 6745 . . . . . . . 8 (𝐹 Fn 𝑅𝐹:𝑅onto→ran 𝐹)
31, 2sylib 217 . . . . . . 7 (𝐹:𝑅⟶ℕ0𝐹:𝑅onto→ran 𝐹)
43ad2antlr 724 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:𝑅onto→ran 𝐹)
5 foeq2 6736 . . . . . . 7 (𝑅 = ∅ → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
65adantl 482 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
74, 6mpbid 231 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:∅–onto→ran 𝐹)
8 fo00 6803 . . . . . 6 (𝐹:∅–onto→ran 𝐹 ↔ (𝐹 = ∅ ∧ ran 𝐹 = ∅))
98simplbi 498 . . . . 5 (𝐹:∅–onto→ran 𝐹𝐹 = ∅)
107, 9syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹 = ∅)
1110oveq2d 7353 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) = (0 Ramsey ∅))
12 0nn0 12349 . . . . 5 0 ∈ ℕ0
13 ram0 16820 . . . . 5 (0 ∈ ℕ0 → (0 Ramsey ∅) = 0)
1412, 13ax-mp 5 . . . 4 (0 Ramsey ∅) = 0
1514, 12eqeltri 2833 . . 3 (0 Ramsey ∅) ∈ ℕ0
1611, 15eqeltrdi 2845 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
17 0ram2 16819 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ))
18 frn 6658 . . . . . . 7 (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0)
19183ad2ant3 1134 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0)
20 nn0ssz 12442 . . . . . . . 8 0 ⊆ ℤ
2119, 20sstrdi 3944 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ)
22 fdm 6660 . . . . . . . . . 10 (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅)
23223ad2ant3 1134 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅)
24 simp2 1136 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅)
2523, 24eqnetrd 3008 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅)
26 dm0rn0 5866 . . . . . . . . 9 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2726necon3bii 2993 . . . . . . . 8 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2825, 27sylib 217 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅)
29 nn0ssre 12338 . . . . . . . . . 10 0 ⊆ ℝ
3019, 29sstrdi 3944 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ)
31 simp1 1135 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin)
3233ad2ant3 1134 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅onto→ran 𝐹)
33 fofi 9203 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝐹:𝑅onto→ran 𝐹) → ran 𝐹 ∈ Fin)
3431, 32, 33syl2anc 584 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin)
35 fimaxre 12020 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
3630, 34, 28, 35syl3anc 1370 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
37 ssrexv 3999 . . . . . . . 8 (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
3821, 36, 37sylc 65 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
39 suprzcl2 12779 . . . . . . 7 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4021, 28, 38, 39syl3anc 1370 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4119, 40sseldd 3933 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ℕ0)
4217, 41eqeltrd 2837 . . . 4 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
43423expa 1117 . . 3 (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅) ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
4443an32s 649 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
4516, 44pm2.61dane 3029 1 ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  wss 3898  c0 4269   class class class wbr 5092  dom cdm 5620  ran crn 5621   Fn wfn 6474  wf 6475  ontowfo 6477  (class class class)co 7337  Fincfn 8804  supcsup 9297  cr 10971  0cc0 10972   < clt 11110  cle 11111  0cn0 12334  cz 12420   Ramsey cram 16797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-oadd 8371  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-rp 12832  df-fz 13341  df-seq 13823  df-fac 14089  df-bc 14118  df-hash 14146  df-ram 16799
This theorem is referenced by:  ramcl  16827
  Copyright terms: Public domain W3C validator