MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foco Structured version   Visualization version   GIF version

Theorem foco 6577
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)

Proof of Theorem foco
StepHypRef Expression
1 dffo2 6569 . . 3 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶))
2 dffo2 6569 . . 3 (𝐺:𝐴onto𝐵 ↔ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵))
3 fco 6505 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
43ad2ant2r 746 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹𝐺):𝐴𝐶)
5 fdm 6495 . . . . . . . 8 (𝐹:𝐵𝐶 → dom 𝐹 = 𝐵)
6 eqtr3 2820 . . . . . . . 8 ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
75, 6sylan 583 . . . . . . 7 ((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
8 rncoeq 5811 . . . . . . . . 9 (dom 𝐹 = ran 𝐺 → ran (𝐹𝐺) = ran 𝐹)
98eqeq1d 2800 . . . . . . . 8 (dom 𝐹 = ran 𝐺 → (ran (𝐹𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶))
109biimpar 481 . . . . . . 7 ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
117, 10sylan 583 . . . . . 6 (((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
1211an32s 651 . . . . 5 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹𝐺) = 𝐶)
1312adantrl 715 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹𝐺) = 𝐶)
144, 13jca 515 . . 3 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
151, 2, 14syl2anb 600 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
16 dffo2 6569 . 2 ((𝐹𝐺):𝐴onto𝐶 ↔ ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
1715, 16sylibr 237 1 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  dom cdm 5519  ran crn 5520  ccom 5523  wf 6320  ontowfo 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330
This theorem is referenced by:  f1oco  6612  wdomtr  9023  fin1a2lem7  9817  cofull  17196  sursubmefmnd  18053  uniiccdif  24182
  Copyright terms: Public domain W3C validator