MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foco Structured version   Visualization version   GIF version

Theorem foco 6749
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) (Proof shortened by AV, 29-Sep-2024.)
Assertion
Ref Expression
foco ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)

Proof of Theorem foco
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → 𝐹:𝐵onto𝐶)
2 fofun 6736 . . . 4 (𝐺:𝐴onto𝐵 → Fun 𝐺)
32adantl 481 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → Fun 𝐺)
4 forn 6738 . . . . 5 (𝐺:𝐴onto𝐵 → ran 𝐺 = 𝐵)
5 eqimss2 3994 . . . . 5 (ran 𝐺 = 𝐵𝐵 ⊆ ran 𝐺)
64, 5syl 17 . . . 4 (𝐺:𝐴onto𝐵𝐵 ⊆ ran 𝐺)
76adantl 481 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → 𝐵 ⊆ ran 𝐺)
8 focofo 6748 . . 3 ((𝐹:𝐵onto𝐶 ∧ Fun 𝐺𝐵 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐵)–onto𝐶)
91, 3, 7, 8syl3anc 1373 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):(𝐺𝐵)–onto𝐶)
10 focnvimacdmdm 6747 . . . . 5 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)
1110eqcomd 2737 . . . 4 (𝐺:𝐴onto𝐵𝐴 = (𝐺𝐵))
1211adantl 481 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → 𝐴 = (𝐺𝐵))
13 foeq2 6732 . . 3 (𝐴 = (𝐺𝐵) → ((𝐹𝐺):𝐴onto𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–onto𝐶))
1412, 13syl 17 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → ((𝐹𝐺):𝐴onto𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–onto𝐶))
159, 14mpbird 257 1 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wss 3902  ccnv 5615  ran crn 5617  cima 5619  ccom 5620  Fun wfun 6475  ontowfo 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487
This theorem is referenced by:  f1oco  6786  wdomtr  9461  fin1a2lem7  10297  cofull  17843  sursubmefmnd  18804  uniiccdif  25507  fcoresfob  47109
  Copyright terms: Public domain W3C validator