![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foco | Structured version Visualization version GIF version |
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) (Proof shortened by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐹:𝐵–onto→𝐶) | |
2 | fofun 6812 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → Fun 𝐺) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → Fun 𝐺) |
4 | forn 6814 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
5 | eqimss2 4039 | . . . . 5 ⊢ (ran 𝐺 = 𝐵 → 𝐵 ⊆ ran 𝐺) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 ⊆ ran 𝐺) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐵 ⊆ ran 𝐺) |
8 | focofo 6824 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ Fun 𝐺 ∧ 𝐵 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) | |
9 | 1, 3, 7, 8 | syl3anc 1369 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) |
10 | focnvimacdmdm 6823 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
11 | 10 | eqcomd 2734 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
12 | 11 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
13 | foeq2 6808 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) |
15 | 9, 14 | mpbird 257 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ⊆ wss 3947 ◡ccnv 5677 ran crn 5679 “ cima 5681 ∘ ccom 5682 Fun wfun 6542 –onto→wfo 6546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6550 df-fn 6551 df-f 6552 df-fo 6554 |
This theorem is referenced by: f1oco 6862 wdomtr 9598 fin1a2lem7 10429 cofull 17922 sursubmefmnd 18847 uniiccdif 25506 fcoresfob 46454 |
Copyright terms: Public domain | W3C validator |