MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foco Structured version   Visualization version   GIF version

Theorem foco 6598
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)

Proof of Theorem foco
StepHypRef Expression
1 dffo2 6590 . . 3 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶))
2 dffo2 6590 . . 3 (𝐺:𝐴onto𝐵 ↔ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵))
3 fco 6527 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
43ad2ant2r 743 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹𝐺):𝐴𝐶)
5 fdm 6518 . . . . . . . 8 (𝐹:𝐵𝐶 → dom 𝐹 = 𝐵)
6 eqtr3 2847 . . . . . . . 8 ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
75, 6sylan 580 . . . . . . 7 ((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
8 rncoeq 5844 . . . . . . . . 9 (dom 𝐹 = ran 𝐺 → ran (𝐹𝐺) = ran 𝐹)
98eqeq1d 2827 . . . . . . . 8 (dom 𝐹 = ran 𝐺 → (ran (𝐹𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶))
109biimpar 478 . . . . . . 7 ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
117, 10sylan 580 . . . . . 6 (((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
1211an32s 648 . . . . 5 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹𝐺) = 𝐶)
1312adantrl 712 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹𝐺) = 𝐶)
144, 13jca 512 . . 3 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
151, 2, 14syl2anb 597 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
16 dffo2 6590 . 2 ((𝐹𝐺):𝐴onto𝐶 ↔ ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
1715, 16sylibr 235 1 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  dom cdm 5553  ran crn 5554  ccom 5557  wf 6347  ontowfo 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-br 5063  df-opab 5125  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-fun 6353  df-fn 6354  df-f 6355  df-fo 6357
This theorem is referenced by:  f1oco  6633  wdomtr  9031  fin1a2lem7  9820  cofull  17196  uniiccdif  24096
  Copyright terms: Public domain W3C validator