Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foco | Structured version Visualization version GIF version |
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) (Proof shortened by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐹:𝐵–onto→𝐶) | |
2 | fofun 6707 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → Fun 𝐺) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → Fun 𝐺) |
4 | forn 6709 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
5 | eqimss2 3980 | . . . . 5 ⊢ (ran 𝐺 = 𝐵 → 𝐵 ⊆ ran 𝐺) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 ⊆ ran 𝐺) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐵 ⊆ ran 𝐺) |
8 | focofo 6719 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ Fun 𝐺 ∧ 𝐵 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) | |
9 | 1, 3, 7, 8 | syl3anc 1369 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) |
10 | focnvimacdmdm 6718 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
11 | 10 | eqcomd 2739 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
12 | 11 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
13 | foeq2 6703 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) |
15 | 9, 14 | mpbird 256 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ⊆ wss 3889 ◡ccnv 5590 ran crn 5592 “ cima 5594 ∘ ccom 5595 Fun wfun 6441 –onto→wfo 6445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-fun 6449 df-fn 6450 df-f 6451 df-fo 6453 |
This theorem is referenced by: f1oco 6757 wdomtr 9362 fin1a2lem7 10190 cofull 17678 sursubmefmnd 18563 uniiccdif 24770 fcoresfob 44606 |
Copyright terms: Public domain | W3C validator |