| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foco | Structured version Visualization version GIF version | ||
| Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) (Proof shortened by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐹:𝐵–onto→𝐶) | |
| 2 | fofun 6776 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → Fun 𝐺) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → Fun 𝐺) |
| 4 | forn 6778 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
| 5 | eqimss2 4009 | . . . . 5 ⊢ (ran 𝐺 = 𝐵 → 𝐵 ⊆ ran 𝐺) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 ⊆ ran 𝐺) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐵 ⊆ ran 𝐺) |
| 8 | focofo 6788 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ Fun 𝐺 ∧ 𝐵 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) | |
| 9 | 1, 3, 7, 8 | syl3anc 1373 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) |
| 10 | focnvimacdmdm 6787 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 11 | 10 | eqcomd 2736 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 13 | foeq2 6772 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) |
| 15 | 9, 14 | mpbird 257 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ◡ccnv 5640 ran crn 5642 “ cima 5644 ∘ ccom 5645 Fun wfun 6508 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 |
| This theorem is referenced by: f1oco 6826 wdomtr 9535 fin1a2lem7 10366 cofull 17905 sursubmefmnd 18830 uniiccdif 25486 fcoresfob 47077 |
| Copyright terms: Public domain | W3C validator |