MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foco Structured version   Visualization version   GIF version

Theorem foco 6809
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) (Proof shortened by AV, 29-Sep-2024.)
Assertion
Ref Expression
foco ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)

Proof of Theorem foco
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → 𝐹:𝐵onto𝐶)
2 fofun 6796 . . . 4 (𝐺:𝐴onto𝐵 → Fun 𝐺)
32adantl 481 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → Fun 𝐺)
4 forn 6798 . . . . 5 (𝐺:𝐴onto𝐵 → ran 𝐺 = 𝐵)
5 eqimss2 4023 . . . . 5 (ran 𝐺 = 𝐵𝐵 ⊆ ran 𝐺)
64, 5syl 17 . . . 4 (𝐺:𝐴onto𝐵𝐵 ⊆ ran 𝐺)
76adantl 481 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → 𝐵 ⊆ ran 𝐺)
8 focofo 6808 . . 3 ((𝐹:𝐵onto𝐶 ∧ Fun 𝐺𝐵 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐵)–onto𝐶)
91, 3, 7, 8syl3anc 1373 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):(𝐺𝐵)–onto𝐶)
10 focnvimacdmdm 6807 . . . . 5 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)
1110eqcomd 2742 . . . 4 (𝐺:𝐴onto𝐵𝐴 = (𝐺𝐵))
1211adantl 481 . . 3 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → 𝐴 = (𝐺𝐵))
13 foeq2 6792 . . 3 (𝐴 = (𝐺𝐵) → ((𝐹𝐺):𝐴onto𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–onto𝐶))
1412, 13syl 17 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → ((𝐹𝐺):𝐴onto𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–onto𝐶))
159, 14mpbird 257 1 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3931  ccnv 5658  ran crn 5660  cima 5662  ccom 5663  Fun wfun 6530  ontowfo 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542
This theorem is referenced by:  f1oco  6846  wdomtr  9594  fin1a2lem7  10425  cofull  17954  sursubmefmnd  18879  uniiccdif  25536  fcoresfob  47068
  Copyright terms: Public domain W3C validator