Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foco | Structured version Visualization version GIF version |
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo2 6586 | . . 3 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶)) | |
2 | dffo2 6586 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) | |
3 | fco 6522 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
4 | 3 | ad2ant2r 746 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
5 | fdm 6512 | . . . . . . . 8 ⊢ (𝐹:𝐵⟶𝐶 → dom 𝐹 = 𝐵) | |
6 | eqtr3 2781 | . . . . . . . 8 ⊢ ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) | |
7 | 5, 6 | sylan 583 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) |
8 | rncoeq 5822 | . . . . . . . . 9 ⊢ (dom 𝐹 = ran 𝐺 → ran (𝐹 ∘ 𝐺) = ran 𝐹) | |
9 | 8 | eqeq1d 2761 | . . . . . . . 8 ⊢ (dom 𝐹 = ran 𝐺 → (ran (𝐹 ∘ 𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶)) |
10 | 9 | biimpar 481 | . . . . . . 7 ⊢ ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
11 | 7, 10 | sylan 583 | . . . . . 6 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
12 | 11 | an32s 651 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹 ∘ 𝐺) = 𝐶) |
13 | 12 | adantrl 715 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹 ∘ 𝐺) = 𝐶) |
14 | 4, 13 | jca 515 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
15 | 1, 2, 14 | syl2anb 600 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
16 | dffo2 6586 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) | |
17 | 15, 16 | sylibr 237 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 dom cdm 5529 ran crn 5530 ∘ ccom 5533 ⟶wf 6337 –onto→wfo 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5038 df-opab 5100 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-fun 6343 df-fn 6344 df-f 6345 df-fo 6347 |
This theorem is referenced by: f1oco 6630 wdomtr 9086 fin1a2lem7 9880 cofull 17278 sursubmefmnd 18142 uniiccdif 24293 |
Copyright terms: Public domain | W3C validator |