Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foco | Structured version Visualization version GIF version |
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) (Proof shortened by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐹:𝐵–onto→𝐶) | |
2 | fofun 6673 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → Fun 𝐺) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → Fun 𝐺) |
4 | forn 6675 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
5 | eqimss2 3974 | . . . . 5 ⊢ (ran 𝐺 = 𝐵 → 𝐵 ⊆ ran 𝐺) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 ⊆ ran 𝐺) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐵 ⊆ ran 𝐺) |
8 | focofo 6685 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ Fun 𝐺 ∧ 𝐵 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) | |
9 | 1, 3, 7, 8 | syl3anc 1369 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶) |
10 | focnvimacdmdm 6684 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
11 | 10 | eqcomd 2744 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
12 | 11 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
13 | foeq2 6669 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–onto→𝐶)) |
15 | 9, 14 | mpbird 256 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 ran crn 5581 “ cima 5583 ∘ ccom 5584 Fun wfun 6412 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 |
This theorem is referenced by: f1oco 6722 wdomtr 9264 fin1a2lem7 10093 cofull 17566 sursubmefmnd 18450 uniiccdif 24647 fcoresfob 44453 |
Copyright terms: Public domain | W3C validator |