Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwdom Structured version   Visualization version   GIF version

Theorem canthwdom 9089
 Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 8705, equivalent to canth 7111). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
canthwdom ¬ 𝒫 𝐴* 𝐴

Proof of Theorem canthwdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5228 . . . . 5 ∅ ∈ 𝒫 𝐴
2 ne0i 4235 . . . . 5 (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅)
31, 2mp1i 13 . . . 4 (𝒫 𝐴* 𝐴 → 𝒫 𝐴 ≠ ∅)
4 brwdomn0 9079 . . . 4 (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
53, 4syl 17 . . 3 (𝒫 𝐴* 𝐴 → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
65ibi 270 . 2 (𝒫 𝐴* 𝐴 → ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
7 relwdom 9076 . . . . 5 Rel ≼*
87brrelex2i 5583 . . . 4 (𝒫 𝐴* 𝐴𝐴 ∈ V)
9 foeq2 6578 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝑥))
10 pweq 4513 . . . . . . . 8 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
11 foeq3 6579 . . . . . . . 8 (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1210, 11syl 17 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
139, 12bitrd 282 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1413notbid 321 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑓:𝑥onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴onto→𝒫 𝐴))
15 vex 3413 . . . . . 6 𝑥 ∈ V
1615canth 7111 . . . . 5 ¬ 𝑓:𝑥onto→𝒫 𝑥
1714, 16vtoclg 3487 . . . 4 (𝐴 ∈ V → ¬ 𝑓:𝐴onto→𝒫 𝐴)
188, 17syl 17 . . 3 (𝒫 𝐴* 𝐴 → ¬ 𝑓:𝐴onto→𝒫 𝐴)
1918nexdv 1937 . 2 (𝒫 𝐴* 𝐴 → ¬ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
206, 19pm2.65i 197 1 ¬ 𝒫 𝐴* 𝐴
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2951  Vcvv 3409  ∅c0 4227  𝒫 cpw 4497   class class class wbr 5036  –onto→wfo 6338   ≼* cwdom 9074 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fo 6346  df-fv 6348  df-wdom 9075 This theorem is referenced by:  pwdjudom  9689
 Copyright terms: Public domain W3C validator