Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > canthwdom | Structured version Visualization version GIF version |
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 8705, equivalent to canth 7111). (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
canthwdom | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5228 | . . . . 5 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | ne0i 4235 | . . . . 5 ⊢ (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝒫 𝐴 ≠ ∅) |
4 | brwdomn0 9079 | . . . 4 ⊢ (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) |
6 | 5 | ibi 270 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
7 | relwdom 9076 | . . . . 5 ⊢ Rel ≼* | |
8 | 7 | brrelex2i 5583 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝐴 ∈ V) |
9 | foeq2 6578 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝑥)) | |
10 | pweq 4513 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
11 | foeq3 6579 | . . . . . . . 8 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
13 | 9, 12 | bitrd 282 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
14 | 13 | notbid 321 | . . . . 5 ⊢ (𝑥 = 𝐴 → (¬ 𝑓:𝑥–onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴–onto→𝒫 𝐴)) |
15 | vex 3413 | . . . . . 6 ⊢ 𝑥 ∈ V | |
16 | 15 | canth 7111 | . . . . 5 ⊢ ¬ 𝑓:𝑥–onto→𝒫 𝑥 |
17 | 14, 16 | vtoclg 3487 | . . . 4 ⊢ (𝐴 ∈ V → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
18 | 8, 17 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
19 | 18 | nexdv 1937 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
20 | 6, 19 | pm2.65i 197 | 1 ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ∅c0 4227 𝒫 cpw 4497 class class class wbr 5036 –onto→wfo 6338 ≼* cwdom 9074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fo 6346 df-fv 6348 df-wdom 9075 |
This theorem is referenced by: pwdjudom 9689 |
Copyright terms: Public domain | W3C validator |