MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwdom Structured version   Visualization version   GIF version

Theorem canthwdom 9648
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9196, equivalent to canth 7401). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
canthwdom ¬ 𝒫 𝐴* 𝐴

Proof of Theorem canthwdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5374 . . . . 5 ∅ ∈ 𝒫 𝐴
2 ne0i 4364 . . . . 5 (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅)
31, 2mp1i 13 . . . 4 (𝒫 𝐴* 𝐴 → 𝒫 𝐴 ≠ ∅)
4 brwdomn0 9638 . . . 4 (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
53, 4syl 17 . . 3 (𝒫 𝐴* 𝐴 → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
65ibi 267 . 2 (𝒫 𝐴* 𝐴 → ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
7 relwdom 9635 . . . . 5 Rel ≼*
87brrelex2i 5757 . . . 4 (𝒫 𝐴* 𝐴𝐴 ∈ V)
9 foeq2 6831 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝑥))
10 pweq 4636 . . . . . . . 8 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
11 foeq3 6832 . . . . . . . 8 (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1210, 11syl 17 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
139, 12bitrd 279 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1413notbid 318 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑓:𝑥onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴onto→𝒫 𝐴))
15 vex 3492 . . . . . 6 𝑥 ∈ V
1615canth 7401 . . . . 5 ¬ 𝑓:𝑥onto→𝒫 𝑥
1714, 16vtoclg 3566 . . . 4 (𝐴 ∈ V → ¬ 𝑓:𝐴onto→𝒫 𝐴)
188, 17syl 17 . . 3 (𝒫 𝐴* 𝐴 → ¬ 𝑓:𝐴onto→𝒫 𝐴)
1918nexdv 1935 . 2 (𝒫 𝐴* 𝐴 → ¬ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
206, 19pm2.65i 194 1 ¬ 𝒫 𝐴* 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  c0 4352  𝒫 cpw 4622   class class class wbr 5166  ontowfo 6571  * cwdom 9633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-wdom 9634
This theorem is referenced by:  pwdjudom  10284
  Copyright terms: Public domain W3C validator