MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwdom Structured version   Visualization version   GIF version

Theorem canthwdom 9619
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9170, equivalent to canth 7385). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
canthwdom ¬ 𝒫 𝐴* 𝐴

Proof of Theorem canthwdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5356 . . . . 5 ∅ ∈ 𝒫 𝐴
2 ne0i 4341 . . . . 5 (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅)
31, 2mp1i 13 . . . 4 (𝒫 𝐴* 𝐴 → 𝒫 𝐴 ≠ ∅)
4 brwdomn0 9609 . . . 4 (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
53, 4syl 17 . . 3 (𝒫 𝐴* 𝐴 → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
65ibi 267 . 2 (𝒫 𝐴* 𝐴 → ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
7 relwdom 9606 . . . . 5 Rel ≼*
87brrelex2i 5742 . . . 4 (𝒫 𝐴* 𝐴𝐴 ∈ V)
9 foeq2 6817 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝑥))
10 pweq 4614 . . . . . . . 8 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
11 foeq3 6818 . . . . . . . 8 (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1210, 11syl 17 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
139, 12bitrd 279 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1413notbid 318 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑓:𝑥onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴onto→𝒫 𝐴))
15 vex 3484 . . . . . 6 𝑥 ∈ V
1615canth 7385 . . . . 5 ¬ 𝑓:𝑥onto→𝒫 𝑥
1714, 16vtoclg 3554 . . . 4 (𝐴 ∈ V → ¬ 𝑓:𝐴onto→𝒫 𝐴)
188, 17syl 17 . . 3 (𝒫 𝐴* 𝐴 → ¬ 𝑓:𝐴onto→𝒫 𝐴)
1918nexdv 1936 . 2 (𝒫 𝐴* 𝐴 → ¬ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
206, 19pm2.65i 194 1 ¬ 𝒫 𝐴* 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wex 1779  wcel 2108  wne 2940  Vcvv 3480  c0 4333  𝒫 cpw 4600   class class class wbr 5143  ontowfo 6559  * cwdom 9604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-wdom 9605
This theorem is referenced by:  pwdjudom  10255
  Copyright terms: Public domain W3C validator