![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > canthwdom | Structured version Visualization version GIF version |
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9196, equivalent to canth 7401). (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
canthwdom | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5374 | . . . . 5 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | ne0i 4364 | . . . . 5 ⊢ (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝒫 𝐴 ≠ ∅) |
4 | brwdomn0 9638 | . . . 4 ⊢ (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) |
6 | 5 | ibi 267 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
7 | relwdom 9635 | . . . . 5 ⊢ Rel ≼* | |
8 | 7 | brrelex2i 5757 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝐴 ∈ V) |
9 | foeq2 6831 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝑥)) | |
10 | pweq 4636 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
11 | foeq3 6832 | . . . . . . . 8 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
13 | 9, 12 | bitrd 279 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝐴 → (¬ 𝑓:𝑥–onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴–onto→𝒫 𝐴)) |
15 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
16 | 15 | canth 7401 | . . . . 5 ⊢ ¬ 𝑓:𝑥–onto→𝒫 𝑥 |
17 | 14, 16 | vtoclg 3566 | . . . 4 ⊢ (𝐴 ∈ V → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
18 | 8, 17 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
19 | 18 | nexdv 1935 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
20 | 6, 19 | pm2.65i 194 | 1 ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 𝒫 cpw 4622 class class class wbr 5166 –onto→wfo 6571 ≼* cwdom 9633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-wdom 9634 |
This theorem is referenced by: pwdjudom 10284 |
Copyright terms: Public domain | W3C validator |