| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canthwdom | Structured version Visualization version GIF version | ||
| Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9071, equivalent to canth 7323). (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| canthwdom | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5306 | . . . . 5 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | ne0i 4300 | . . . . 5 ⊢ (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅) | |
| 3 | 1, 2 | mp1i 13 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝒫 𝐴 ≠ ∅) |
| 4 | brwdomn0 9498 | . . . 4 ⊢ (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) |
| 6 | 5 | ibi 267 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
| 7 | relwdom 9495 | . . . . 5 ⊢ Rel ≼* | |
| 8 | 7 | brrelex2i 5688 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝐴 ∈ V) |
| 9 | foeq2 6751 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝑥)) | |
| 10 | pweq 4573 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 11 | foeq3 6752 | . . . . . . . 8 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
| 13 | 9, 12 | bitrd 279 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
| 14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝐴 → (¬ 𝑓:𝑥–onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴–onto→𝒫 𝐴)) |
| 15 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 16 | 15 | canth 7323 | . . . . 5 ⊢ ¬ 𝑓:𝑥–onto→𝒫 𝑥 |
| 17 | 14, 16 | vtoclg 3517 | . . . 4 ⊢ (𝐴 ∈ V → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
| 18 | 8, 17 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
| 19 | 18 | nexdv 1936 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
| 20 | 6, 19 | pm2.65i 194 | 1 ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 𝒫 cpw 4559 class class class wbr 5102 –onto→wfo 6497 ≼* cwdom 9493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-wdom 9494 |
| This theorem is referenced by: pwdjudom 10144 |
| Copyright terms: Public domain | W3C validator |