| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canthwdom | Structured version Visualization version GIF version | ||
| Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9100, equivalent to canth 7344). (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| canthwdom | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5314 | . . . . 5 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | ne0i 4307 | . . . . 5 ⊢ (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅) | |
| 3 | 1, 2 | mp1i 13 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝒫 𝐴 ≠ ∅) |
| 4 | brwdomn0 9529 | . . . 4 ⊢ (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) |
| 6 | 5 | ibi 267 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
| 7 | relwdom 9526 | . . . . 5 ⊢ Rel ≼* | |
| 8 | 7 | brrelex2i 5698 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝐴 ∈ V) |
| 9 | foeq2 6772 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝑥)) | |
| 10 | pweq 4580 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 11 | foeq3 6773 | . . . . . . . 8 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
| 13 | 9, 12 | bitrd 279 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
| 14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝐴 → (¬ 𝑓:𝑥–onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴–onto→𝒫 𝐴)) |
| 15 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 16 | 15 | canth 7344 | . . . . 5 ⊢ ¬ 𝑓:𝑥–onto→𝒫 𝑥 |
| 17 | 14, 16 | vtoclg 3523 | . . . 4 ⊢ (𝐴 ∈ V → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
| 18 | 8, 17 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
| 19 | 18 | nexdv 1936 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
| 20 | 6, 19 | pm2.65i 194 | 1 ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 𝒫 cpw 4566 class class class wbr 5110 –onto→wfo 6512 ≼* cwdom 9524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-wdom 9525 |
| This theorem is referenced by: pwdjudom 10175 |
| Copyright terms: Public domain | W3C validator |