MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwdom Structured version   Visualization version   GIF version

Theorem canthwdom 9573
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9129, equivalent to canth 7361). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
canthwdom ¬ 𝒫 𝐴* 𝐴

Proof of Theorem canthwdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5354 . . . . 5 ∅ ∈ 𝒫 𝐴
2 ne0i 4334 . . . . 5 (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅)
31, 2mp1i 13 . . . 4 (𝒫 𝐴* 𝐴 → 𝒫 𝐴 ≠ ∅)
4 brwdomn0 9563 . . . 4 (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
53, 4syl 17 . . 3 (𝒫 𝐴* 𝐴 → (𝒫 𝐴* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴))
65ibi 266 . 2 (𝒫 𝐴* 𝐴 → ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
7 relwdom 9560 . . . . 5 Rel ≼*
87brrelex2i 5733 . . . 4 (𝒫 𝐴* 𝐴𝐴 ∈ V)
9 foeq2 6802 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝑥))
10 pweq 4616 . . . . . . . 8 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
11 foeq3 6803 . . . . . . . 8 (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1210, 11syl 17 . . . . . . 7 (𝑥 = 𝐴 → (𝑓:𝐴onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
139, 12bitrd 278 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥onto→𝒫 𝑥𝑓:𝐴onto→𝒫 𝐴))
1413notbid 317 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑓:𝑥onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴onto→𝒫 𝐴))
15 vex 3478 . . . . . 6 𝑥 ∈ V
1615canth 7361 . . . . 5 ¬ 𝑓:𝑥onto→𝒫 𝑥
1714, 16vtoclg 3556 . . . 4 (𝐴 ∈ V → ¬ 𝑓:𝐴onto→𝒫 𝐴)
188, 17syl 17 . . 3 (𝒫 𝐴* 𝐴 → ¬ 𝑓:𝐴onto→𝒫 𝐴)
1918nexdv 1939 . 2 (𝒫 𝐴* 𝐴 → ¬ ∃𝑓 𝑓:𝐴onto→𝒫 𝐴)
206, 19pm2.65i 193 1 ¬ 𝒫 𝐴* 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  c0 4322  𝒫 cpw 4602   class class class wbr 5148  ontowfo 6541  * cwdom 9558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-wdom 9559
This theorem is referenced by:  pwdjudom  10210
  Copyright terms: Public domain W3C validator