![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > canthwdom | Structured version Visualization version GIF version |
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9169, equivalent to canth 7385). (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
canthwdom | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5362 | . . . . 5 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | ne0i 4347 | . . . . 5 ⊢ (∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝒫 𝐴 ≠ ∅) |
4 | brwdomn0 9607 | . . . 4 ⊢ (𝒫 𝐴 ≠ ∅ → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → (𝒫 𝐴 ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴)) |
6 | 5 | ibi 267 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
7 | relwdom 9604 | . . . . 5 ⊢ Rel ≼* | |
8 | 7 | brrelex2i 5746 | . . . 4 ⊢ (𝒫 𝐴 ≼* 𝐴 → 𝐴 ∈ V) |
9 | foeq2 6818 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝑥)) | |
10 | pweq 4619 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
11 | foeq3 6819 | . . . . . . . 8 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
13 | 9, 12 | bitrd 279 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–onto→𝒫 𝑥 ↔ 𝑓:𝐴–onto→𝒫 𝐴)) |
14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝐴 → (¬ 𝑓:𝑥–onto→𝒫 𝑥 ↔ ¬ 𝑓:𝐴–onto→𝒫 𝐴)) |
15 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
16 | 15 | canth 7385 | . . . . 5 ⊢ ¬ 𝑓:𝑥–onto→𝒫 𝑥 |
17 | 14, 16 | vtoclg 3554 | . . . 4 ⊢ (𝐴 ∈ V → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
18 | 8, 17 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ 𝑓:𝐴–onto→𝒫 𝐴) |
19 | 18 | nexdv 1934 | . 2 ⊢ (𝒫 𝐴 ≼* 𝐴 → ¬ ∃𝑓 𝑓:𝐴–onto→𝒫 𝐴) |
20 | 6, 19 | pm2.65i 194 | 1 ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 –onto→wfo 6561 ≼* cwdom 9602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-wdom 9603 |
This theorem is referenced by: pwdjudom 10253 |
Copyright terms: Public domain | W3C validator |