MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5lem Structured version   Visualization version   GIF version

Theorem frgrwopreglem5lem 29264
Description: Lemma for frgrwopreglem5 29265. (Contributed by AV, 5-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5lem (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝐴,𝑏   𝑥,𝐵   𝑦,𝐷   𝐺,𝑎,𝑏,𝑦,𝑥   𝑦,𝑉
Allowed substitution hints:   𝐴(𝑦,𝑎)   𝐵(𝑦,𝑎,𝑏)   𝐷(𝑎,𝑏)   𝐸(𝑥,𝑦,𝑎,𝑏)   𝐾(𝑦,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem frgrwopreglem5lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
21reqabi 3429 . . . . 5 (𝑥𝐴 ↔ (𝑥𝑉 ∧ (𝐷𝑥) = 𝐾))
3 fveqeq2 6851 . . . . . . 7 (𝑥 = 𝑎 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑎) = 𝐾))
43, 1elrab2 3648 . . . . . 6 (𝑎𝐴 ↔ (𝑎𝑉 ∧ (𝐷𝑎) = 𝐾))
5 eqtr3 2762 . . . . . . . . 9 (((𝐷𝑎) = 𝐾 ∧ (𝐷𝑥) = 𝐾) → (𝐷𝑎) = (𝐷𝑥))
65expcom 414 . . . . . . . 8 ((𝐷𝑥) = 𝐾 → ((𝐷𝑎) = 𝐾 → (𝐷𝑎) = (𝐷𝑥)))
76adantl 482 . . . . . . 7 ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → ((𝐷𝑎) = 𝐾 → (𝐷𝑎) = (𝐷𝑥)))
87com12 32 . . . . . 6 ((𝐷𝑎) = 𝐾 → ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (𝐷𝑎) = (𝐷𝑥)))
94, 8simplbiim 505 . . . . 5 (𝑎𝐴 → ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (𝐷𝑎) = (𝐷𝑥)))
102, 9biimtrid 241 . . . 4 (𝑎𝐴 → (𝑥𝐴 → (𝐷𝑎) = (𝐷𝑥)))
1110imp 407 . . 3 ((𝑎𝐴𝑥𝐴) → (𝐷𝑎) = (𝐷𝑥))
1211adantr 481 . 2 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (𝐷𝑎) = (𝐷𝑥))
13 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
14 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
15 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
1613, 14, 1, 15frgrwopreglem3 29258 . . 3 ((𝑎𝐴𝑏𝐵) → (𝐷𝑎) ≠ (𝐷𝑏))
1716ad2ant2r 745 . 2 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (𝐷𝑎) ≠ (𝐷𝑏))
18 fveqeq2 6851 . . . . . 6 (𝑥 = 𝑧 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑧) = 𝐾))
1918cbvrabv 3417 . . . . 5 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑧𝑉 ∣ (𝐷𝑧) = 𝐾}
201, 19eqtri 2764 . . . 4 𝐴 = {𝑧𝑉 ∣ (𝐷𝑧) = 𝐾}
2113, 14, 20, 15frgrwopreglem3 29258 . . 3 ((𝑥𝐴𝑦𝐵) → (𝐷𝑥) ≠ (𝐷𝑦))
2221ad2ant2l 744 . 2 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (𝐷𝑥) ≠ (𝐷𝑦))
2312, 17, 223jca 1128 1 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  {crab 3407  cdif 3907  cfv 6496  Vtxcvtx 27947  Edgcedg 27998  VtxDegcvtxdg 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-iota 6448  df-fv 6504
This theorem is referenced by:  frgrwopreglem5  29265
  Copyright terms: Public domain W3C validator