Step | Hyp | Ref
| Expression |
1 | | frgrwopreg.a |
. . . . . 6
⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
2 | 1 | rabeq2i 3412 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾)) |
3 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑎) = 𝐾)) |
4 | 3, 1 | elrab2 3620 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 ↔ (𝑎 ∈ 𝑉 ∧ (𝐷‘𝑎) = 𝐾)) |
5 | | eqtr3 2764 |
. . . . . . . . 9
⊢ (((𝐷‘𝑎) = 𝐾 ∧ (𝐷‘𝑥) = 𝐾) → (𝐷‘𝑎) = (𝐷‘𝑥)) |
6 | 5 | expcom 413 |
. . . . . . . 8
⊢ ((𝐷‘𝑥) = 𝐾 → ((𝐷‘𝑎) = 𝐾 → (𝐷‘𝑎) = (𝐷‘𝑥))) |
7 | 6 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → ((𝐷‘𝑎) = 𝐾 → (𝐷‘𝑎) = (𝐷‘𝑥))) |
8 | 7 | com12 32 |
. . . . . 6
⊢ ((𝐷‘𝑎) = 𝐾 → ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → (𝐷‘𝑎) = (𝐷‘𝑥))) |
9 | 4, 8 | simplbiim 504 |
. . . . 5
⊢ (𝑎 ∈ 𝐴 → ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → (𝐷‘𝑎) = (𝐷‘𝑥))) |
10 | 2, 9 | syl5bi 241 |
. . . 4
⊢ (𝑎 ∈ 𝐴 → (𝑥 ∈ 𝐴 → (𝐷‘𝑎) = (𝐷‘𝑥))) |
11 | 10 | imp 406 |
. . 3
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐷‘𝑎) = (𝐷‘𝑥)) |
12 | 11 | adantr 480 |
. 2
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐷‘𝑎) = (𝐷‘𝑥)) |
13 | | frgrwopreg.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
14 | | frgrwopreg.d |
. . . 4
⊢ 𝐷 = (VtxDeg‘𝐺) |
15 | | frgrwopreg.b |
. . . 4
⊢ 𝐵 = (𝑉 ∖ 𝐴) |
16 | 13, 14, 1, 15 | frgrwopreglem3 28579 |
. . 3
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝐷‘𝑎) ≠ (𝐷‘𝑏)) |
17 | 16 | ad2ant2r 743 |
. 2
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐷‘𝑎) ≠ (𝐷‘𝑏)) |
18 | | fveqeq2 6765 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑧) = 𝐾)) |
19 | 18 | cbvrabv 3416 |
. . . . 5
⊢ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = {𝑧 ∈ 𝑉 ∣ (𝐷‘𝑧) = 𝐾} |
20 | 1, 19 | eqtri 2766 |
. . . 4
⊢ 𝐴 = {𝑧 ∈ 𝑉 ∣ (𝐷‘𝑧) = 𝐾} |
21 | 13, 14, 20, 15 | frgrwopreglem3 28579 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐷‘𝑥) ≠ (𝐷‘𝑦)) |
22 | 21 | ad2ant2l 742 |
. 2
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐷‘𝑥) ≠ (𝐷‘𝑦)) |
23 | 12, 17, 22 | 3jca 1126 |
1
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐷‘𝑎) = (𝐷‘𝑥) ∧ (𝐷‘𝑎) ≠ (𝐷‘𝑏) ∧ (𝐷‘𝑥) ≠ (𝐷‘𝑦))) |