MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5lem Structured version   Visualization version   GIF version

Theorem frgrwopreglem5lem 28099
Description: Lemma for frgrwopreglem5 28100. (Contributed by AV, 5-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5lem (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝐴,𝑏   𝑥,𝐵   𝑦,𝐷   𝐺,𝑎,𝑏,𝑦,𝑥   𝑦,𝑉
Allowed substitution hints:   𝐴(𝑦,𝑎)   𝐵(𝑦,𝑎,𝑏)   𝐷(𝑎,𝑏)   𝐸(𝑥,𝑦,𝑎,𝑏)   𝐾(𝑦,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem frgrwopreglem5lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
21rabeq2i 3487 . . . . 5 (𝑥𝐴 ↔ (𝑥𝑉 ∧ (𝐷𝑥) = 𝐾))
3 fveqeq2 6679 . . . . . . 7 (𝑥 = 𝑎 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑎) = 𝐾))
43, 1elrab2 3683 . . . . . 6 (𝑎𝐴 ↔ (𝑎𝑉 ∧ (𝐷𝑎) = 𝐾))
5 eqtr3 2843 . . . . . . . . 9 (((𝐷𝑎) = 𝐾 ∧ (𝐷𝑥) = 𝐾) → (𝐷𝑎) = (𝐷𝑥))
65expcom 416 . . . . . . . 8 ((𝐷𝑥) = 𝐾 → ((𝐷𝑎) = 𝐾 → (𝐷𝑎) = (𝐷𝑥)))
76adantl 484 . . . . . . 7 ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → ((𝐷𝑎) = 𝐾 → (𝐷𝑎) = (𝐷𝑥)))
87com12 32 . . . . . 6 ((𝐷𝑎) = 𝐾 → ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (𝐷𝑎) = (𝐷𝑥)))
94, 8simplbiim 507 . . . . 5 (𝑎𝐴 → ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (𝐷𝑎) = (𝐷𝑥)))
102, 9syl5bi 244 . . . 4 (𝑎𝐴 → (𝑥𝐴 → (𝐷𝑎) = (𝐷𝑥)))
1110imp 409 . . 3 ((𝑎𝐴𝑥𝐴) → (𝐷𝑎) = (𝐷𝑥))
1211adantr 483 . 2 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (𝐷𝑎) = (𝐷𝑥))
13 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
14 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
15 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
1613, 14, 1, 15frgrwopreglem3 28093 . . 3 ((𝑎𝐴𝑏𝐵) → (𝐷𝑎) ≠ (𝐷𝑏))
1716ad2ant2r 745 . 2 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (𝐷𝑎) ≠ (𝐷𝑏))
18 fveqeq2 6679 . . . . . 6 (𝑥 = 𝑧 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑧) = 𝐾))
1918cbvrabv 3491 . . . . 5 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑧𝑉 ∣ (𝐷𝑧) = 𝐾}
201, 19eqtri 2844 . . . 4 𝐴 = {𝑧𝑉 ∣ (𝐷𝑧) = 𝐾}
2113, 14, 20, 15frgrwopreglem3 28093 . . 3 ((𝑥𝐴𝑦𝐵) → (𝐷𝑥) ≠ (𝐷𝑦))
2221ad2ant2l 744 . 2 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (𝐷𝑥) ≠ (𝐷𝑦))
2312, 17, 223jca 1124 1 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {crab 3142  cdif 3933  cfv 6355  Vtxcvtx 26781  Edgcedg 26832  VtxDegcvtxdg 27247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363
This theorem is referenced by:  frgrwopreglem5  28100
  Copyright terms: Public domain W3C validator