Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrwopreglem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for frgrwopreg 28221. The vertices in the sets 𝐴 and 𝐵 have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
Ref | Expression |
---|---|
frgrwopreglem3 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6672 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑌) = 𝐾)) | |
2 | 1 | notbid 321 | . . . 4 ⊢ (𝑥 = 𝑌 → (¬ (𝐷‘𝑥) = 𝐾 ↔ ¬ (𝐷‘𝑌) = 𝐾)) |
3 | frgrwopreg.b | . . . . 5 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
4 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
5 | 4 | difeq2i 4027 | . . . . 5 ⊢ (𝑉 ∖ 𝐴) = (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) |
6 | notrab 4216 | . . . . 5 ⊢ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = {𝑥 ∈ 𝑉 ∣ ¬ (𝐷‘𝑥) = 𝐾} | |
7 | 3, 5, 6 | 3eqtri 2785 | . . . 4 ⊢ 𝐵 = {𝑥 ∈ 𝑉 ∣ ¬ (𝐷‘𝑥) = 𝐾} |
8 | 2, 7 | elrab2 3607 | . . 3 ⊢ (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑉 ∧ ¬ (𝐷‘𝑌) = 𝐾)) |
9 | fveqeq2 6672 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑋) = 𝐾)) | |
10 | 9, 4 | elrab2 3607 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝑉 ∧ (𝐷‘𝑋) = 𝐾)) |
11 | eqeq2 2770 | . . . . . . 7 ⊢ ((𝐷‘𝑋) = 𝐾 → ((𝐷‘𝑌) = (𝐷‘𝑋) ↔ (𝐷‘𝑌) = 𝐾)) | |
12 | 11 | notbid 321 | . . . . . 6 ⊢ ((𝐷‘𝑋) = 𝐾 → (¬ (𝐷‘𝑌) = (𝐷‘𝑋) ↔ ¬ (𝐷‘𝑌) = 𝐾)) |
13 | neqne 2959 | . . . . . . 7 ⊢ (¬ (𝐷‘𝑌) = (𝐷‘𝑋) → (𝐷‘𝑌) ≠ (𝐷‘𝑋)) | |
14 | 13 | necomd 3006 | . . . . . 6 ⊢ (¬ (𝐷‘𝑌) = (𝐷‘𝑋) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
15 | 12, 14 | syl6bir 257 | . . . . 5 ⊢ ((𝐷‘𝑋) = 𝐾 → (¬ (𝐷‘𝑌) = 𝐾 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
16 | 10, 15 | simplbiim 508 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (¬ (𝐷‘𝑌) = 𝐾 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
17 | 16 | com12 32 | . . 3 ⊢ (¬ (𝐷‘𝑌) = 𝐾 → (𝑋 ∈ 𝐴 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
18 | 8, 17 | simplbiim 508 | . 2 ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ 𝐴 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
19 | 18 | impcom 411 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 {crab 3074 ∖ cdif 3857 ‘cfv 6340 Vtxcvtx 26902 VtxDegcvtxdg 27368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 |
This theorem is referenced by: frgrwopreglem4 28213 frgrwopreglem5lem 28218 |
Copyright terms: Public domain | W3C validator |