![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for frgrwopreg 30355. The vertices in the sets 𝐴 and 𝐵 have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
Ref | Expression |
---|---|
frgrwopreglem3 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6929 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑌) = 𝐾)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑌 → (¬ (𝐷‘𝑥) = 𝐾 ↔ ¬ (𝐷‘𝑌) = 𝐾)) |
3 | frgrwopreg.b | . . . . 5 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
4 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
5 | 4 | difeq2i 4146 | . . . . 5 ⊢ (𝑉 ∖ 𝐴) = (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) |
6 | notrab 4341 | . . . . 5 ⊢ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = {𝑥 ∈ 𝑉 ∣ ¬ (𝐷‘𝑥) = 𝐾} | |
7 | 3, 5, 6 | 3eqtri 2772 | . . . 4 ⊢ 𝐵 = {𝑥 ∈ 𝑉 ∣ ¬ (𝐷‘𝑥) = 𝐾} |
8 | 2, 7 | elrab2 3711 | . . 3 ⊢ (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑉 ∧ ¬ (𝐷‘𝑌) = 𝐾)) |
9 | fveqeq2 6929 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑋) = 𝐾)) | |
10 | 9, 4 | elrab2 3711 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝑉 ∧ (𝐷‘𝑋) = 𝐾)) |
11 | eqeq2 2752 | . . . . . . 7 ⊢ ((𝐷‘𝑋) = 𝐾 → ((𝐷‘𝑌) = (𝐷‘𝑋) ↔ (𝐷‘𝑌) = 𝐾)) | |
12 | 11 | notbid 318 | . . . . . 6 ⊢ ((𝐷‘𝑋) = 𝐾 → (¬ (𝐷‘𝑌) = (𝐷‘𝑋) ↔ ¬ (𝐷‘𝑌) = 𝐾)) |
13 | neqne 2954 | . . . . . . 7 ⊢ (¬ (𝐷‘𝑌) = (𝐷‘𝑋) → (𝐷‘𝑌) ≠ (𝐷‘𝑋)) | |
14 | 13 | necomd 3002 | . . . . . 6 ⊢ (¬ (𝐷‘𝑌) = (𝐷‘𝑋) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
15 | 12, 14 | biimtrrdi 254 | . . . . 5 ⊢ ((𝐷‘𝑋) = 𝐾 → (¬ (𝐷‘𝑌) = 𝐾 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
16 | 10, 15 | simplbiim 504 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (¬ (𝐷‘𝑌) = 𝐾 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
17 | 16 | com12 32 | . . 3 ⊢ (¬ (𝐷‘𝑌) = 𝐾 → (𝑋 ∈ 𝐴 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
18 | 8, 17 | simplbiim 504 | . 2 ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ 𝐴 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
19 | 18 | impcom 407 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ∖ cdif 3973 ‘cfv 6573 Vtxcvtx 29031 VtxDegcvtxdg 29501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: frgrwopreglem4 30347 frgrwopreglem5lem 30352 |
Copyright terms: Public domain | W3C validator |