| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopreglem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for frgrwopreg 30343. The vertices in the sets 𝐴 and 𝐵 have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
| frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
| Ref | Expression |
|---|---|
| frgrwopreglem3 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6914 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑌) = 𝐾)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑌 → (¬ (𝐷‘𝑥) = 𝐾 ↔ ¬ (𝐷‘𝑌) = 𝐾)) |
| 3 | frgrwopreg.b | . . . . 5 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
| 4 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
| 5 | 4 | difeq2i 4122 | . . . . 5 ⊢ (𝑉 ∖ 𝐴) = (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) |
| 6 | notrab 4321 | . . . . 5 ⊢ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = {𝑥 ∈ 𝑉 ∣ ¬ (𝐷‘𝑥) = 𝐾} | |
| 7 | 3, 5, 6 | 3eqtri 2768 | . . . 4 ⊢ 𝐵 = {𝑥 ∈ 𝑉 ∣ ¬ (𝐷‘𝑥) = 𝐾} |
| 8 | 2, 7 | elrab2 3694 | . . 3 ⊢ (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑉 ∧ ¬ (𝐷‘𝑌) = 𝐾)) |
| 9 | fveqeq2 6914 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑋) = 𝐾)) | |
| 10 | 9, 4 | elrab2 3694 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝑉 ∧ (𝐷‘𝑋) = 𝐾)) |
| 11 | eqeq2 2748 | . . . . . . 7 ⊢ ((𝐷‘𝑋) = 𝐾 → ((𝐷‘𝑌) = (𝐷‘𝑋) ↔ (𝐷‘𝑌) = 𝐾)) | |
| 12 | 11 | notbid 318 | . . . . . 6 ⊢ ((𝐷‘𝑋) = 𝐾 → (¬ (𝐷‘𝑌) = (𝐷‘𝑋) ↔ ¬ (𝐷‘𝑌) = 𝐾)) |
| 13 | neqne 2947 | . . . . . . 7 ⊢ (¬ (𝐷‘𝑌) = (𝐷‘𝑋) → (𝐷‘𝑌) ≠ (𝐷‘𝑋)) | |
| 14 | 13 | necomd 2995 | . . . . . 6 ⊢ (¬ (𝐷‘𝑌) = (𝐷‘𝑋) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
| 15 | 12, 14 | biimtrrdi 254 | . . . . 5 ⊢ ((𝐷‘𝑋) = 𝐾 → (¬ (𝐷‘𝑌) = 𝐾 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
| 16 | 10, 15 | simplbiim 504 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (¬ (𝐷‘𝑌) = 𝐾 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
| 17 | 16 | com12 32 | . . 3 ⊢ (¬ (𝐷‘𝑌) = 𝐾 → (𝑋 ∈ 𝐴 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
| 18 | 8, 17 | simplbiim 504 | . 2 ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ 𝐴 → (𝐷‘𝑋) ≠ (𝐷‘𝑌))) |
| 19 | 18 | impcom 407 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 ∖ cdif 3947 ‘cfv 6560 Vtxcvtx 29014 VtxDegcvtxdg 29484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 |
| This theorem is referenced by: frgrwopreglem4 30335 frgrwopreglem5lem 30340 |
| Copyright terms: Public domain | W3C validator |