Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad2ant2l | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 713 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantll 711 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: funcnvqp 6505 mpteqb 6903 mpofunOLD 7408 soxp 7979 wfrlem4OLD 8152 oaass 8401 undifixp 8731 undomOLD 8856 xpdom2 8863 tcrank 9651 inawinalem 10454 addcanpr 10811 ltsosr 10859 1re 10984 add42 11205 muladd 11416 mulsub 11427 divmuleq 11689 ltmul12a 11840 lemul12b 11841 lemul12a 11842 mulge0b 11854 qaddcl 12714 qmulcl 12716 iooshf 13167 fzass4 13303 elfzomelpfzo 13500 modid 13625 swrdccatin2 14451 pfxccatin12 14455 cshwleneq 14539 s2eq2seq 14659 tanaddlem 15884 fpwipodrs 18267 gsumsgrpccat 18487 issubg4 18783 ghmpreima 18865 cntzsubg 18952 symgfixf1 19054 islmodd 20138 lssvsubcl 20214 lssvscl 20226 lmhmf1o 20317 pwsdiaglmhm 20328 lmimco 21060 scmatghm 21691 scmatmhm 21692 mat2pmatscmxcl 21898 fctop 22163 cctop 22165 opnneissb 22274 pnrmopn 22503 hausnei2 22513 neitx 22767 txcnmpt 22784 txrest 22791 tx1stc 22810 fbssfi 22997 opnfbas 23002 rnelfmlem 23112 alexsubALTlem3 23209 metcnp3 23705 cncfmet 24081 evth 24131 caucfil 24456 ovolun 24672 dveflem 25152 efnnfsumcl 26261 efchtdvds 26317 lgsdir2 26487 axdimuniq 27290 axcontlem2 27342 clwwlkf1 28422 frgrwopreglem5lem 28693 frgrwopreglem5ALT 28695 friendship 28772 hvsub4 29408 his35 29459 shscli 29688 5oalem2 30026 3oalem2 30034 hosub4 30184 hmops 30391 hmopm 30392 hmopco 30394 adjmul 30463 adjadd 30464 mdslmd1lem1 30696 mdslmd1lem2 30697 satffunlem 33372 elmrsubrn 33491 dfon2lem6 33773 funline 34453 neibastop2lem 34558 isbasisrelowllem1 35535 isbasisrelowllem2 35536 mbfposadd 35833 itg2addnc 35840 fdc 35912 seqpo 35914 ismtyval 35967 paddss12 37840 mzpcompact2lem 40580 jm2.26 40831 fmtnofac2lem 45031 rnghmsubcsetclem2 45545 rhmsubcsetclem2 45591 rhmsubcrngclem2 45597 zlmodzxzsubm 45706 ltsubaddb 45866 ltsubsubb 45867 |
Copyright terms: Public domain | W3C validator |