Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad2ant2l | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 712 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantll 710 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: funcnvqp 6482 mpteqb 6876 mpofunOLD 7377 soxp 7941 wfrlem4OLD 8114 oaass 8354 undifixp 8680 undom 8800 xpdom2 8807 tcrank 9573 inawinalem 10376 addcanpr 10733 ltsosr 10781 1re 10906 add42 11126 muladd 11337 mulsub 11348 divmuleq 11610 ltmul12a 11761 lemul12b 11762 lemul12a 11763 mulge0b 11775 qaddcl 12634 qmulcl 12636 iooshf 13087 fzass4 13223 elfzomelpfzo 13419 modid 13544 swrdccatin2 14370 pfxccatin12 14374 cshwleneq 14458 s2eq2seq 14578 tanaddlem 15803 fpwipodrs 18173 gsumsgrpccat 18393 issubg4 18689 ghmpreima 18771 cntzsubg 18858 symgfixf1 18960 islmodd 20044 lssvsubcl 20120 lssvscl 20132 lmhmf1o 20223 pwsdiaglmhm 20234 lmimco 20961 scmatghm 21590 scmatmhm 21591 mat2pmatscmxcl 21797 fctop 22062 cctop 22064 opnneissb 22173 pnrmopn 22402 hausnei2 22412 neitx 22666 txcnmpt 22683 txrest 22690 tx1stc 22709 fbssfi 22896 opnfbas 22901 rnelfmlem 23011 alexsubALTlem3 23108 metcnp3 23602 cncfmet 23978 evth 24028 caucfil 24352 ovolun 24568 dveflem 25048 efnnfsumcl 26157 efchtdvds 26213 lgsdir2 26383 axdimuniq 27184 axcontlem2 27236 clwwlkf1 28314 frgrwopreglem5lem 28585 frgrwopreglem5ALT 28587 friendship 28664 hvsub4 29300 his35 29351 shscli 29580 5oalem2 29918 3oalem2 29926 hosub4 30076 hmops 30283 hmopm 30284 hmopco 30286 adjmul 30355 adjadd 30356 mdslmd1lem1 30588 mdslmd1lem2 30589 satffunlem 33263 elmrsubrn 33382 dfon2lem6 33670 funline 34371 neibastop2lem 34476 isbasisrelowllem1 35453 isbasisrelowllem2 35454 mbfposadd 35751 itg2addnc 35758 fdc 35830 seqpo 35832 ismtyval 35885 paddss12 37760 mzpcompact2lem 40489 jm2.26 40740 fmtnofac2lem 44908 rnghmsubcsetclem2 45422 rhmsubcsetclem2 45468 rhmsubcrngclem2 45474 zlmodzxzsubm 45583 ltsubaddb 45743 ltsubsubb 45744 |
Copyright terms: Public domain | W3C validator |