Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem2 Structured version   Visualization version   GIF version

Theorem functhinclem2 46323
Description: Lemma for functhinc 46326. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinclem2.x (𝜑𝑋𝐵)
functhinclem2.y (𝜑𝑌𝐵)
functhinclem2.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
Assertion
Ref Expression
functhinclem2 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem functhinclem2
StepHypRef Expression
1 functhinclem2.x . 2 (𝜑𝑋𝐵)
2 functhinclem2.y . 2 (𝜑𝑌𝐵)
3 functhinclem2.1 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
4 simpl 483 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
54fveq2d 6778 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
6 simpr 485 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
76fveq2d 6778 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
85, 7oveq12d 7293 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
98eqeq1d 2740 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
10 oveq12 7284 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1110eqeq1d 2740 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅))
129, 11imbi12d 345 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅) ↔ (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)))
1312rspc2gv 3569 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅) → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)))
1413imp 407 . 2 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
151, 2, 3, 14syl21anc 835 1 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  c0 4256  cfv 6433  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  functhinclem4  46325  functhinc  46326
  Copyright terms: Public domain W3C validator