Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . 3
⊢ ((𝜑 ∧ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) → 𝜑) |
2 | | simpr2 1194 |
. . 3
⊢ ((𝜑 ∧ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) → 𝐺 Fn (𝐵 × 𝐵)) |
3 | | simpr3 1195 |
. . 3
⊢ ((𝜑 ∧ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) |
4 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤))) = ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤))) |
5 | | functhinclem1.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
6 | 5 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
7 | | functhinclem1.e |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ThinCat) |
8 | 7 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝐸 ∈ ThinCat) |
9 | | functhinclem1.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
10 | 9 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝐹:𝐵⟶𝐶) |
11 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
12 | 10, 11 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐹‘𝑧) ∈ 𝐶) |
13 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
14 | 10, 13 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐹‘𝑤) ∈ 𝐶) |
15 | | functhinclem1.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝐸) |
16 | | functhinclem1.j |
. . . . . . . . 9
⊢ 𝐽 = (Hom ‘𝐸) |
17 | 8, 12, 14, 15, 16 | thincmo 46310 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ∃*𝑚 𝑚 ∈ ((𝐹‘𝑧)𝐽(𝐹‘𝑤))) |
18 | 4, 6, 17 | mofeu 46175 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)) ↔ (𝑧𝐺𝑤) = ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤))))) |
19 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥𝐻𝑦) = (𝑧𝐻𝑦)) |
20 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
21 | 20 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑧)𝐽(𝐹‘𝑦))) |
22 | 19, 21 | xpeq12d 5620 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) = ((𝑧𝐻𝑦) × ((𝐹‘𝑧)𝐽(𝐹‘𝑦)))) |
23 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (𝑧𝐻𝑦) = (𝑧𝐻𝑤)) |
24 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
25 | 24 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑧)𝐽(𝐹‘𝑤))) |
26 | 23, 25 | xpeq12d 5620 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((𝑧𝐻𝑦) × ((𝐹‘𝑧)𝐽(𝐹‘𝑦))) = ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) |
27 | | functhinclem1.k |
. . . . . . . . . 10
⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
28 | | ovex 7308 |
. . . . . . . . . . 11
⊢ (𝑧𝐻𝑤) ∈ V |
29 | | ovex 7308 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑧)𝐽(𝐹‘𝑤)) ∈ V |
30 | 28, 29 | xpex 7603 |
. . . . . . . . . 10
⊢ ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ∈ V |
31 | 22, 26, 27, 30 | ovmpo 7433 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑧𝐾𝑤) = ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) |
32 | 31 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧𝐾𝑤) = ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) |
33 | 32 | eqeq2d 2749 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑧𝐺𝑤) = (𝑧𝐾𝑤) ↔ (𝑧𝐺𝑤) = ((𝑧𝐻𝑤) × ((𝐹‘𝑧)𝐽(𝐹‘𝑤))))) |
34 | 18, 33 | bitr4d 281 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)) ↔ (𝑧𝐺𝑤) = (𝑧𝐾𝑤))) |
35 | 34 | 2ralbidva 3128 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤) = (𝑧𝐾𝑤))) |
36 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) → 𝐺 Fn (𝐵 × 𝐵)) |
37 | | ovex 7308 |
. . . . . . . 8
⊢ (𝑥𝐻𝑦) ∈ V |
38 | | ovex 7308 |
. . . . . . . 8
⊢ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∈ V |
39 | 37, 38 | xpex 7603 |
. . . . . . 7
⊢ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) ∈ V |
40 | 27, 39 | fnmpoi 7910 |
. . . . . 6
⊢ 𝐾 Fn (𝐵 × 𝐵) |
41 | | eqfnov2 7404 |
. . . . . 6
⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ 𝐾 Fn (𝐵 × 𝐵)) → (𝐺 = 𝐾 ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤) = (𝑧𝐾𝑤))) |
42 | 36, 40, 41 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) → (𝐺 = 𝐾 ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤) = (𝑧𝐾𝑤))) |
43 | 35, 42 | bitr4d 281 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)) ↔ 𝐺 = 𝐾)) |
44 | 43 | biimpa 477 |
. . 3
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) → 𝐺 = 𝐾) |
45 | 1, 2, 3, 44 | syl21anc 835 |
. 2
⊢ ((𝜑 ∧ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) → 𝐺 = 𝐾) |
46 | | functhinclem1.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐷) |
47 | 46 | fvexi 6788 |
. . . . . . 7
⊢ 𝐵 ∈ V |
48 | 47, 47 | mpoex 7920 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ∈ V |
49 | 27, 48 | eqeltri 2835 |
. . . . 5
⊢ 𝐾 ∈ V |
50 | | eleq1 2826 |
. . . . 5
⊢ (𝐺 = 𝐾 → (𝐺 ∈ V ↔ 𝐾 ∈ V)) |
51 | 49, 50 | mpbiri 257 |
. . . 4
⊢ (𝐺 = 𝐾 → 𝐺 ∈ V) |
52 | 51 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → 𝐺 ∈ V) |
53 | | fneq1 6524 |
. . . . 5
⊢ (𝐺 = 𝐾 → (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐾 Fn (𝐵 × 𝐵))) |
54 | 40, 53 | mpbiri 257 |
. . . 4
⊢ (𝐺 = 𝐾 → 𝐺 Fn (𝐵 × 𝐵)) |
55 | 54 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → 𝐺 Fn (𝐵 × 𝐵)) |
56 | | simpl 483 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → 𝜑) |
57 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → 𝐺 = 𝐾) |
58 | 43 | biimpar 478 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 Fn (𝐵 × 𝐵)) ∧ 𝐺 = 𝐾) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) |
59 | 56, 55, 57, 58 | syl21anc 835 |
. . 3
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) |
60 | 52, 55, 59 | 3jca 1127 |
. 2
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤)))) |
61 | 45, 60 | impbida 798 |
1
⊢ (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ↔ 𝐺 = 𝐾)) |