Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem4 Structured version   Visualization version   GIF version

Theorem functhinclem4 46277
Description: Lemma for functhinc 46278. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
functhinclem4.1 1 = (Id‘𝐷)
functhinclem4.i 𝐼 = (Id‘𝐸)
functhinclem4.x · = (comp‘𝐷)
functhinclem4.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
functhinclem4 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Distinct variable groups:   𝐵,𝑏,𝑐,𝑚,𝑛   𝑤,𝐵,𝑧,𝑏,𝑐   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑤,𝐹,𝑧   𝐺,𝑎,𝑏,𝑐,𝑚,𝑛   𝑛,𝐻   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑤,𝐽,𝑧   𝐾,𝑎,𝑏,𝑐,𝑚,𝑛   𝜑,𝑎,𝑏,𝑐,𝑚,𝑛   𝑤,𝑎,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑎)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   · (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   1 (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐹(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑚,𝑎,𝑏,𝑐)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐽(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)

Proof of Theorem functhinclem4
Dummy variables 𝑝 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.e . . . . 5 (𝜑𝐸 ∈ ThinCat)
21ad2antrr 722 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ ThinCat)
3 functhinc.c . . . 4 𝐶 = (Base‘𝐸)
4 functhinc.j . . . 4 𝐽 = (Hom ‘𝐸)
5 functhinc.f . . . . . 6 (𝜑𝐹:𝐵𝐶)
65adantr 480 . . . . 5 ((𝜑𝐺 = 𝐾) → 𝐹:𝐵𝐶)
76ffvelrnda 6955 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
8 functhinclem4.i . . . 4 𝐼 = (Id‘𝐸)
9 simpr 484 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝑎𝐵)
10 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
11 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
12 functhinclem4.1 . . . . . 6 1 = (Id‘𝐷)
13 functhinc.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
1413ad2antrr 722 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐷 ∈ Cat)
1510, 11, 12, 14, 9catidcl 17372 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ( 1𝑎) ∈ (𝑎𝐻𝑎))
16 simplr 765 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = 𝐾)
17 functhinc.k . . . . . . 7 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
18 oveq1 7275 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥𝐻𝑦) = (𝑣𝐻𝑦))
19 fveq2 6768 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
2019oveq1d 7283 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑦)))
2118, 20xpeq12d 5619 . . . . . . . 8 (𝑥 = 𝑣 → ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))))
22 oveq2 7276 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑣𝐻𝑦) = (𝑣𝐻𝑢))
23 fveq2 6768 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
2423oveq2d 7284 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐹𝑣)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑢)))
2522, 24xpeq12d 5619 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2621, 25cbvmpov 7361 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2717, 26eqtri 2767 . . . . . 6 𝐾 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2816, 27eqtrdi 2795 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
29 functhinc.1 . . . . . . 7 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
3029ad2antrr 722 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
319, 9, 30functhinclem2 46275 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝐹𝑎)𝐽(𝐹𝑎)) = ∅ → (𝑎𝐻𝑎) = ∅))
322, 7, 7, 3, 4thincmo 46262 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
339, 9, 15, 28, 31, 32functhinclem3 46276 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
342, 3, 4, 7, 8, 33thincid 46266 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)))
357ad2antrr 722 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑎) ∈ 𝐶)
365ad4antr 728 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐹:𝐵𝐶)
37 simplrr 774 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑐𝐵)
3836, 37ffvelrnd 6956 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑐) ∈ 𝐶)
399ad2antrr 722 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑎𝐵)
40 functhinclem4.x . . . . . . . 8 · = (comp‘𝐷)
4113ad4antr 728 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐷 ∈ Cat)
42 simplrl 773 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑏𝐵)
43 simprl 767 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑚 ∈ (𝑎𝐻𝑏))
44 simprr 769 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑛 ∈ (𝑏𝐻𝑐))
4510, 11, 40, 41, 39, 42, 37, 43, 44catcocl 17375 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝑛(⟨𝑎, 𝑏· 𝑐)𝑚) ∈ (𝑎𝐻𝑐))
4628ad2antrr 722 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
4729ad4antr 728 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
4839, 37, 47functhinclem2 46275 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑐)) = ∅ → (𝑎𝐻𝑐) = ∅))
491ad4antr 728 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ ThinCat)
5049, 35, 38, 3, 4thincmo 46262 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
5139, 37, 45, 46, 48, 50functhinclem3 46276 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
52 functhinclem4.o . . . . . . 7 𝑂 = (comp‘𝐸)
532thinccd 46258 . . . . . . . 8 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ Cat)
5453ad2antrr 722 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ Cat)
5536, 42ffvelrnd 6956 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑏) ∈ 𝐶)
5639, 42, 47functhinclem2 46275 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑏)) = ∅ → (𝑎𝐻𝑏) = ∅))
5749, 35, 55, 3, 4thincmo 46262 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5839, 42, 43, 46, 56, 57functhinclem3 46276 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑏)‘𝑚) ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5942, 37, 47functhinclem2 46275 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑏)𝐽(𝐹𝑐)) = ∅ → (𝑏𝐻𝑐) = ∅))
6049, 55, 38, 3, 4thincmo 46262 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
6142, 37, 44, 46, 59, 60functhinclem3 46276 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑏𝐺𝑐)‘𝑛) ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
623, 4, 52, 54, 35, 55, 38, 58, 61catcocl 17375 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
6335, 38, 51, 62, 3, 4, 49thincmo2 46261 . . . . 5 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6463ralrimivva 3116 . . . 4 ((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6564ralrimivva 3116 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6634, 65jca 511 . 2 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
6766ralrimiva 3109 1 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  c0 4261  cop 4572   × cxp 5586  wf 6426  cfv 6430  (class class class)co 7268  cmpo 7270  Basecbs 16893  Hom chom 16954  compcco 16955  Catccat 17354  Idccid 17355  ThinCatcthinc 46252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-cat 17358  df-cid 17359  df-thinc 46253
This theorem is referenced by:  functhinc  46278
  Copyright terms: Public domain W3C validator