Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem4 Structured version   Visualization version   GIF version

Theorem functhinclem4 49416
Description: Lemma for functhinc 49417. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
functhinclem4.1 1 = (Id‘𝐷)
functhinclem4.i 𝐼 = (Id‘𝐸)
functhinclem4.x · = (comp‘𝐷)
functhinclem4.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
functhinclem4 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Distinct variable groups:   𝐵,𝑏,𝑐,𝑚,𝑛   𝑤,𝐵,𝑧,𝑏,𝑐   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑤,𝐹,𝑧   𝐺,𝑎,𝑏,𝑐,𝑚,𝑛   𝑛,𝐻   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑤,𝐽,𝑧   𝐾,𝑎,𝑏,𝑐,𝑚,𝑛   𝜑,𝑎,𝑏,𝑐,𝑚,𝑛   𝑤,𝑎,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑎)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   · (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   1 (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐹(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑚,𝑎,𝑏,𝑐)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐽(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)

Proof of Theorem functhinclem4
Dummy variables 𝑝 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.e . . . . 5 (𝜑𝐸 ∈ ThinCat)
21ad2antrr 726 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ ThinCat)
3 functhinc.c . . . 4 𝐶 = (Base‘𝐸)
4 functhinc.j . . . 4 𝐽 = (Hom ‘𝐸)
5 functhinc.f . . . . . 6 (𝜑𝐹:𝐵𝐶)
65adantr 480 . . . . 5 ((𝜑𝐺 = 𝐾) → 𝐹:𝐵𝐶)
76ffvelcdmda 7058 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
8 functhinclem4.i . . . 4 𝐼 = (Id‘𝐸)
9 simpr 484 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝑎𝐵)
10 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
11 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
12 functhinclem4.1 . . . . . 6 1 = (Id‘𝐷)
13 functhinc.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
1413ad2antrr 726 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐷 ∈ Cat)
1510, 11, 12, 14, 9catidcl 17649 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ( 1𝑎) ∈ (𝑎𝐻𝑎))
16 simplr 768 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = 𝐾)
17 functhinc.k . . . . . . 7 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
18 oveq1 7396 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥𝐻𝑦) = (𝑣𝐻𝑦))
19 fveq2 6860 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
2019oveq1d 7404 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑦)))
2118, 20xpeq12d 5671 . . . . . . . 8 (𝑥 = 𝑣 → ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))))
22 oveq2 7397 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑣𝐻𝑦) = (𝑣𝐻𝑢))
23 fveq2 6860 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
2423oveq2d 7405 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐹𝑣)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑢)))
2522, 24xpeq12d 5671 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2621, 25cbvmpov 7486 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2717, 26eqtri 2753 . . . . . 6 𝐾 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2816, 27eqtrdi 2781 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
29 functhinc.1 . . . . . . 7 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
3029ad2antrr 726 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
319, 9, 30functhinclem2 49414 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝐹𝑎)𝐽(𝐹𝑎)) = ∅ → (𝑎𝐻𝑎) = ∅))
322, 7, 7, 3, 4thincmo 49397 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
339, 9, 15, 28, 31, 32functhinclem3 49415 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
342, 3, 4, 7, 8, 33thincid 49401 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)))
357ad2antrr 726 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑎) ∈ 𝐶)
365ad4antr 732 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐹:𝐵𝐶)
37 simplrr 777 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑐𝐵)
3836, 37ffvelcdmd 7059 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑐) ∈ 𝐶)
399ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑎𝐵)
40 functhinclem4.x . . . . . . . 8 · = (comp‘𝐷)
4113ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐷 ∈ Cat)
42 simplrl 776 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑏𝐵)
43 simprl 770 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑚 ∈ (𝑎𝐻𝑏))
44 simprr 772 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑛 ∈ (𝑏𝐻𝑐))
4510, 11, 40, 41, 39, 42, 37, 43, 44catcocl 17652 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝑛(⟨𝑎, 𝑏· 𝑐)𝑚) ∈ (𝑎𝐻𝑐))
4628ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
4729ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
4839, 37, 47functhinclem2 49414 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑐)) = ∅ → (𝑎𝐻𝑐) = ∅))
491ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ ThinCat)
5049, 35, 38, 3, 4thincmo 49397 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
5139, 37, 45, 46, 48, 50functhinclem3 49415 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
52 functhinclem4.o . . . . . . 7 𝑂 = (comp‘𝐸)
532thinccd 49392 . . . . . . . 8 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ Cat)
5453ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ Cat)
5536, 42ffvelcdmd 7059 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑏) ∈ 𝐶)
5639, 42, 47functhinclem2 49414 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑏)) = ∅ → (𝑎𝐻𝑏) = ∅))
5749, 35, 55, 3, 4thincmo 49397 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5839, 42, 43, 46, 56, 57functhinclem3 49415 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑏)‘𝑚) ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5942, 37, 47functhinclem2 49414 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑏)𝐽(𝐹𝑐)) = ∅ → (𝑏𝐻𝑐) = ∅))
6049, 55, 38, 3, 4thincmo 49397 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
6142, 37, 44, 46, 59, 60functhinclem3 49415 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑏𝐺𝑐)‘𝑛) ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
623, 4, 52, 54, 35, 55, 38, 58, 61catcocl 17652 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
6335, 38, 51, 62, 3, 4, 49thincmo2 49395 . . . . 5 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6463ralrimivva 3181 . . . 4 ((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6564ralrimivva 3181 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6634, 65jca 511 . 2 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
6766ralrimiva 3126 1 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  c0 4298  cop 4597   × cxp 5638  wf 6509  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632  ThinCatcthinc 49386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-cat 17635  df-cid 17636  df-thinc 49387
This theorem is referenced by:  functhinc  49417
  Copyright terms: Public domain W3C validator