Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem4 Structured version   Visualization version   GIF version

Theorem functhinclem4 49436
Description: Lemma for functhinc 49437. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
functhinclem4.1 1 = (Id‘𝐷)
functhinclem4.i 𝐼 = (Id‘𝐸)
functhinclem4.x · = (comp‘𝐷)
functhinclem4.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
functhinclem4 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Distinct variable groups:   𝐵,𝑏,𝑐,𝑚,𝑛   𝑤,𝐵,𝑧,𝑏,𝑐   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑤,𝐹,𝑧   𝐺,𝑎,𝑏,𝑐,𝑚,𝑛   𝑛,𝐻   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑤,𝐽,𝑧   𝐾,𝑎,𝑏,𝑐,𝑚,𝑛   𝜑,𝑎,𝑏,𝑐,𝑚,𝑛   𝑤,𝑎,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑎)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   · (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   1 (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐹(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑚,𝑎,𝑏,𝑐)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐽(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)

Proof of Theorem functhinclem4
Dummy variables 𝑝 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.e . . . . 5 (𝜑𝐸 ∈ ThinCat)
21ad2antrr 726 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ ThinCat)
3 functhinc.c . . . 4 𝐶 = (Base‘𝐸)
4 functhinc.j . . . 4 𝐽 = (Hom ‘𝐸)
5 functhinc.f . . . . . 6 (𝜑𝐹:𝐵𝐶)
65adantr 480 . . . . 5 ((𝜑𝐺 = 𝐾) → 𝐹:𝐵𝐶)
76ffvelcdmda 7056 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
8 functhinclem4.i . . . 4 𝐼 = (Id‘𝐸)
9 simpr 484 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝑎𝐵)
10 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
11 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
12 functhinclem4.1 . . . . . 6 1 = (Id‘𝐷)
13 functhinc.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
1413ad2antrr 726 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐷 ∈ Cat)
1510, 11, 12, 14, 9catidcl 17643 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ( 1𝑎) ∈ (𝑎𝐻𝑎))
16 simplr 768 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = 𝐾)
17 functhinc.k . . . . . . 7 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
18 oveq1 7394 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥𝐻𝑦) = (𝑣𝐻𝑦))
19 fveq2 6858 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
2019oveq1d 7402 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑦)))
2118, 20xpeq12d 5669 . . . . . . . 8 (𝑥 = 𝑣 → ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))))
22 oveq2 7395 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑣𝐻𝑦) = (𝑣𝐻𝑢))
23 fveq2 6858 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
2423oveq2d 7403 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐹𝑣)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑢)))
2522, 24xpeq12d 5669 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2621, 25cbvmpov 7484 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2717, 26eqtri 2752 . . . . . 6 𝐾 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2816, 27eqtrdi 2780 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
29 functhinc.1 . . . . . . 7 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
3029ad2antrr 726 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
319, 9, 30functhinclem2 49434 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝐹𝑎)𝐽(𝐹𝑎)) = ∅ → (𝑎𝐻𝑎) = ∅))
322, 7, 7, 3, 4thincmo 49417 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
339, 9, 15, 28, 31, 32functhinclem3 49435 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
342, 3, 4, 7, 8, 33thincid 49421 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)))
357ad2antrr 726 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑎) ∈ 𝐶)
365ad4antr 732 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐹:𝐵𝐶)
37 simplrr 777 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑐𝐵)
3836, 37ffvelcdmd 7057 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑐) ∈ 𝐶)
399ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑎𝐵)
40 functhinclem4.x . . . . . . . 8 · = (comp‘𝐷)
4113ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐷 ∈ Cat)
42 simplrl 776 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑏𝐵)
43 simprl 770 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑚 ∈ (𝑎𝐻𝑏))
44 simprr 772 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑛 ∈ (𝑏𝐻𝑐))
4510, 11, 40, 41, 39, 42, 37, 43, 44catcocl 17646 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝑛(⟨𝑎, 𝑏· 𝑐)𝑚) ∈ (𝑎𝐻𝑐))
4628ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
4729ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
4839, 37, 47functhinclem2 49434 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑐)) = ∅ → (𝑎𝐻𝑐) = ∅))
491ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ ThinCat)
5049, 35, 38, 3, 4thincmo 49417 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
5139, 37, 45, 46, 48, 50functhinclem3 49435 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
52 functhinclem4.o . . . . . . 7 𝑂 = (comp‘𝐸)
532thinccd 49412 . . . . . . . 8 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ Cat)
5453ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ Cat)
5536, 42ffvelcdmd 7057 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑏) ∈ 𝐶)
5639, 42, 47functhinclem2 49434 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑏)) = ∅ → (𝑎𝐻𝑏) = ∅))
5749, 35, 55, 3, 4thincmo 49417 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5839, 42, 43, 46, 56, 57functhinclem3 49435 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑏)‘𝑚) ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5942, 37, 47functhinclem2 49434 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑏)𝐽(𝐹𝑐)) = ∅ → (𝑏𝐻𝑐) = ∅))
6049, 55, 38, 3, 4thincmo 49417 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
6142, 37, 44, 46, 59, 60functhinclem3 49435 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑏𝐺𝑐)‘𝑛) ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
623, 4, 52, 54, 35, 55, 38, 58, 61catcocl 17646 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
6335, 38, 51, 62, 3, 4, 49thincmo2 49415 . . . . 5 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6463ralrimivva 3180 . . . 4 ((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6564ralrimivva 3180 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6634, 65jca 511 . 2 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
6766ralrimiva 3125 1 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4296  cop 4595   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  ThinCatcthinc 49406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-cat 17629  df-cid 17630  df-thinc 49407
This theorem is referenced by:  functhinc  49437
  Copyright terms: Public domain W3C validator