Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem4 Structured version   Visualization version   GIF version

Theorem functhinclem4 49442
Description: Lemma for functhinc 49443. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
functhinclem4.1 1 = (Id‘𝐷)
functhinclem4.i 𝐼 = (Id‘𝐸)
functhinclem4.x · = (comp‘𝐷)
functhinclem4.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
functhinclem4 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Distinct variable groups:   𝐵,𝑏,𝑐,𝑚,𝑛   𝑤,𝐵,𝑧,𝑏,𝑐   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑤,𝐹,𝑧   𝐺,𝑎,𝑏,𝑐,𝑚,𝑛   𝑛,𝐻   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑤,𝐽,𝑧   𝐾,𝑎,𝑏,𝑐,𝑚,𝑛   𝜑,𝑎,𝑏,𝑐,𝑚,𝑛   𝑤,𝑎,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑎)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   · (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   1 (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐹(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑚,𝑎,𝑏,𝑐)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐽(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)

Proof of Theorem functhinclem4
Dummy variables 𝑝 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.e . . . . 5 (𝜑𝐸 ∈ ThinCat)
21ad2antrr 726 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ ThinCat)
3 functhinc.c . . . 4 𝐶 = (Base‘𝐸)
4 functhinc.j . . . 4 𝐽 = (Hom ‘𝐸)
5 functhinc.f . . . . . 6 (𝜑𝐹:𝐵𝐶)
65adantr 480 . . . . 5 ((𝜑𝐺 = 𝐾) → 𝐹:𝐵𝐶)
76ffvelcdmda 7018 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
8 functhinclem4.i . . . 4 𝐼 = (Id‘𝐸)
9 simpr 484 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝑎𝐵)
10 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
11 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
12 functhinclem4.1 . . . . . 6 1 = (Id‘𝐷)
13 functhinc.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
1413ad2antrr 726 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐷 ∈ Cat)
1510, 11, 12, 14, 9catidcl 17588 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ( 1𝑎) ∈ (𝑎𝐻𝑎))
16 simplr 768 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = 𝐾)
17 functhinc.k . . . . . . 7 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
18 oveq1 7356 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥𝐻𝑦) = (𝑣𝐻𝑦))
19 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
2019oveq1d 7364 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑦)))
2118, 20xpeq12d 5650 . . . . . . . 8 (𝑥 = 𝑣 → ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))))
22 oveq2 7357 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑣𝐻𝑦) = (𝑣𝐻𝑢))
23 fveq2 6822 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
2423oveq2d 7365 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐹𝑣)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑢)))
2522, 24xpeq12d 5650 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2621, 25cbvmpov 7444 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2717, 26eqtri 2752 . . . . . 6 𝐾 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2816, 27eqtrdi 2780 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
29 functhinc.1 . . . . . . 7 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
3029ad2antrr 726 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
319, 9, 30functhinclem2 49440 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝐹𝑎)𝐽(𝐹𝑎)) = ∅ → (𝑎𝐻𝑎) = ∅))
322, 7, 7, 3, 4thincmo 49423 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
339, 9, 15, 28, 31, 32functhinclem3 49441 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
342, 3, 4, 7, 8, 33thincid 49427 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)))
357ad2antrr 726 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑎) ∈ 𝐶)
365ad4antr 732 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐹:𝐵𝐶)
37 simplrr 777 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑐𝐵)
3836, 37ffvelcdmd 7019 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑐) ∈ 𝐶)
399ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑎𝐵)
40 functhinclem4.x . . . . . . . 8 · = (comp‘𝐷)
4113ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐷 ∈ Cat)
42 simplrl 776 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑏𝐵)
43 simprl 770 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑚 ∈ (𝑎𝐻𝑏))
44 simprr 772 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑛 ∈ (𝑏𝐻𝑐))
4510, 11, 40, 41, 39, 42, 37, 43, 44catcocl 17591 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝑛(⟨𝑎, 𝑏· 𝑐)𝑚) ∈ (𝑎𝐻𝑐))
4628ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
4729ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
4839, 37, 47functhinclem2 49440 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑐)) = ∅ → (𝑎𝐻𝑐) = ∅))
491ad4antr 732 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ ThinCat)
5049, 35, 38, 3, 4thincmo 49423 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
5139, 37, 45, 46, 48, 50functhinclem3 49441 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
52 functhinclem4.o . . . . . . 7 𝑂 = (comp‘𝐸)
532thinccd 49418 . . . . . . . 8 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ Cat)
5453ad2antrr 726 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ Cat)
5536, 42ffvelcdmd 7019 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑏) ∈ 𝐶)
5639, 42, 47functhinclem2 49440 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑏)) = ∅ → (𝑎𝐻𝑏) = ∅))
5749, 35, 55, 3, 4thincmo 49423 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5839, 42, 43, 46, 56, 57functhinclem3 49441 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑏)‘𝑚) ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5942, 37, 47functhinclem2 49440 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑏)𝐽(𝐹𝑐)) = ∅ → (𝑏𝐻𝑐) = ∅))
6049, 55, 38, 3, 4thincmo 49423 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
6142, 37, 44, 46, 59, 60functhinclem3 49441 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑏𝐺𝑐)‘𝑛) ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
623, 4, 52, 54, 35, 55, 38, 58, 61catcocl 17591 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
6335, 38, 51, 62, 3, 4, 49thincmo2 49421 . . . . 5 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6463ralrimivva 3172 . . . 4 ((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6564ralrimivva 3172 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6634, 65jca 511 . 2 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
6766ralrimiva 3121 1 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4284  cop 4583   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  ThinCatcthinc 49412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-cat 17574  df-cid 17575  df-thinc 49413
This theorem is referenced by:  functhinc  49443
  Copyright terms: Public domain W3C validator