Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem4 Structured version   Visualization version   GIF version

Theorem functhinclem4 46743
Description: Lemma for functhinc 46744. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
functhinclem4.1 1 = (Id‘𝐷)
functhinclem4.i 𝐼 = (Id‘𝐸)
functhinclem4.x · = (comp‘𝐷)
functhinclem4.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
functhinclem4 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Distinct variable groups:   𝐵,𝑏,𝑐,𝑚,𝑛   𝑤,𝐵,𝑧,𝑏,𝑐   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑤,𝐹,𝑧   𝐺,𝑎,𝑏,𝑐,𝑚,𝑛   𝑛,𝐻   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑤,𝐽,𝑧   𝐾,𝑎,𝑏,𝑐,𝑚,𝑛   𝜑,𝑎,𝑏,𝑐,𝑚,𝑛   𝑤,𝑎,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑎)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   · (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   1 (𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐹(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑚,𝑎,𝑏,𝑐)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)   𝐽(𝑚,𝑛,𝑎,𝑏,𝑐)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑥,𝑦,𝑧,𝑤,𝑚,𝑛,𝑎,𝑏,𝑐)

Proof of Theorem functhinclem4
Dummy variables 𝑝 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.e . . . . 5 (𝜑𝐸 ∈ ThinCat)
21ad2antrr 724 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ ThinCat)
3 functhinc.c . . . 4 𝐶 = (Base‘𝐸)
4 functhinc.j . . . 4 𝐽 = (Hom ‘𝐸)
5 functhinc.f . . . . . 6 (𝜑𝐹:𝐵𝐶)
65adantr 482 . . . . 5 ((𝜑𝐺 = 𝐾) → 𝐹:𝐵𝐶)
76ffvelcdmda 7021 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
8 functhinclem4.i . . . 4 𝐼 = (Id‘𝐸)
9 simpr 486 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝑎𝐵)
10 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
11 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
12 functhinclem4.1 . . . . . 6 1 = (Id‘𝐷)
13 functhinc.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
1413ad2antrr 724 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐷 ∈ Cat)
1510, 11, 12, 14, 9catidcl 17488 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ( 1𝑎) ∈ (𝑎𝐻𝑎))
16 simplr 767 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = 𝐾)
17 functhinc.k . . . . . . 7 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
18 oveq1 7348 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥𝐻𝑦) = (𝑣𝐻𝑦))
19 fveq2 6829 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
2019oveq1d 7356 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑦)))
2118, 20xpeq12d 5655 . . . . . . . 8 (𝑥 = 𝑣 → ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))))
22 oveq2 7349 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑣𝐻𝑦) = (𝑣𝐻𝑢))
23 fveq2 6829 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
2423oveq2d 7357 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐹𝑣)𝐽(𝐹𝑦)) = ((𝐹𝑣)𝐽(𝐹𝑢)))
2522, 24xpeq12d 5655 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑣𝐻𝑦) × ((𝐹𝑣)𝐽(𝐹𝑦))) = ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2621, 25cbvmpov 7436 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2717, 26eqtri 2765 . . . . . 6 𝐾 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢))))
2816, 27eqtrdi 2793 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
29 functhinc.1 . . . . . . 7 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
3029ad2antrr 724 . . . . . 6 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
319, 9, 30functhinclem2 46741 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝐹𝑎)𝐽(𝐹𝑎)) = ∅ → (𝑎𝐻𝑎) = ∅))
322, 7, 7, 3, 4thincmo 46728 . . . . 5 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
339, 9, 15, 28, 31, 32functhinclem3 46742 . . . 4 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) ∈ ((𝐹𝑎)𝐽(𝐹𝑎)))
342, 3, 4, 7, 8, 33thincid 46732 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)))
357ad2antrr 724 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑎) ∈ 𝐶)
365ad4antr 730 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐹:𝐵𝐶)
37 simplrr 776 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑐𝐵)
3836, 37ffvelcdmd 7022 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑐) ∈ 𝐶)
399ad2antrr 724 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑎𝐵)
40 functhinclem4.x . . . . . . . 8 · = (comp‘𝐷)
4113ad4antr 730 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐷 ∈ Cat)
42 simplrl 775 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑏𝐵)
43 simprl 769 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑚 ∈ (𝑎𝐻𝑏))
44 simprr 771 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑛 ∈ (𝑏𝐻𝑐))
4510, 11, 40, 41, 39, 42, 37, 43, 44catcocl 17491 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝑛(⟨𝑎, 𝑏· 𝑐)𝑚) ∈ (𝑎𝐻𝑐))
4628ad2antrr 724 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐺 = (𝑣𝐵, 𝑢𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹𝑣)𝐽(𝐹𝑢)))))
4729ad4antr 730 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
4839, 37, 47functhinclem2 46741 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑐)) = ∅ → (𝑎𝐻𝑐) = ∅))
491ad4antr 730 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ ThinCat)
5049, 35, 38, 3, 4thincmo 46728 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
5139, 37, 45, 46, 48, 50functhinclem3 46742 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
52 functhinclem4.o . . . . . . 7 𝑂 = (comp‘𝐸)
532thinccd 46724 . . . . . . . 8 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → 𝐸 ∈ Cat)
5453ad2antrr 724 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ Cat)
5536, 42ffvelcdmd 7022 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹𝑏) ∈ 𝐶)
5639, 42, 47functhinclem2 46741 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑎)𝐽(𝐹𝑏)) = ∅ → (𝑎𝐻𝑏) = ∅))
5749, 35, 55, 3, 4thincmo 46728 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5839, 42, 43, 46, 56, 57functhinclem3 46742 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑏)‘𝑚) ∈ ((𝐹𝑎)𝐽(𝐹𝑏)))
5942, 37, 47functhinclem2 46741 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹𝑏)𝐽(𝐹𝑐)) = ∅ → (𝑏𝐻𝑐) = ∅))
6049, 55, 38, 3, 4thincmo 46728 . . . . . . . 8 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
6142, 37, 44, 46, 59, 60functhinclem3 46742 . . . . . . 7 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑏𝐺𝑐)‘𝑛) ∈ ((𝐹𝑏)𝐽(𝐹𝑐)))
623, 4, 52, 54, 35, 55, 38, 58, 61catcocl 17491 . . . . . 6 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)) ∈ ((𝐹𝑎)𝐽(𝐹𝑐)))
6335, 38, 51, 62, 3, 4, 49thincmo2 46727 . . . . 5 (((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6463ralrimivva 3194 . . . 4 ((((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6564ralrimivva 3194 . . 3 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚)))
6634, 65jca 513 . 2 (((𝜑𝐺 = 𝐾) ∧ 𝑎𝐵) → (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
6766ralrimiva 3140 1 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wral 3062  c0 4273  cop 4583   × cxp 5622  wf 6479  cfv 6483  (class class class)co 7341  cmpo 7343  Basecbs 17009  Hom chom 17070  compcco 17071  Catccat 17470  Idccid 17471  ThinCatcthinc 46718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-cat 17474  df-cid 17475  df-thinc 46719
This theorem is referenced by:  functhinc  46744
  Copyright terms: Public domain W3C validator