Step | Hyp | Ref
| Expression |
1 | | functhinc.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ ThinCat) |
2 | 1 | ad2antrr 724 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ ThinCat) |
3 | | functhinc.c |
. . . 4
⊢ 𝐶 = (Base‘𝐸) |
4 | | functhinc.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐸) |
5 | | functhinc.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
6 | 5 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → 𝐹:𝐵⟶𝐶) |
7 | 6 | ffvelcdmda 6993 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ 𝐶) |
8 | | functhinclem4.i |
. . . 4
⊢ 𝐼 = (Id‘𝐸) |
9 | | simpr 486 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
10 | | functhinc.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
11 | | functhinc.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐷) |
12 | | functhinclem4.1 |
. . . . . 6
⊢ 1 =
(Id‘𝐷) |
13 | | functhinc.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
14 | 13 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐷 ∈ Cat) |
15 | 10, 11, 12, 14, 9 | catidcl 17436 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ( 1 ‘𝑎) ∈ (𝑎𝐻𝑎)) |
16 | | simplr 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐺 = 𝐾) |
17 | | functhinc.k |
. . . . . . 7
⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
18 | | oveq1 7314 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → (𝑥𝐻𝑦) = (𝑣𝐻𝑦)) |
19 | | fveq2 6804 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (𝐹‘𝑥) = (𝐹‘𝑣)) |
20 | 19 | oveq1d 7322 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑣)𝐽(𝐹‘𝑦))) |
21 | 18, 20 | xpeq12d 5631 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) = ((𝑣𝐻𝑦) × ((𝐹‘𝑣)𝐽(𝐹‘𝑦)))) |
22 | | oveq2 7315 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑣𝐻𝑦) = (𝑣𝐻𝑢)) |
23 | | fveq2 6804 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (𝐹‘𝑦) = (𝐹‘𝑢)) |
24 | 23 | oveq2d 7323 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → ((𝐹‘𝑣)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑣)𝐽(𝐹‘𝑢))) |
25 | 22, 24 | xpeq12d 5631 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝑣𝐻𝑦) × ((𝐹‘𝑣)𝐽(𝐹‘𝑦))) = ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢)))) |
26 | 21, 25 | cbvmpov 7402 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢)))) |
27 | 17, 26 | eqtri 2764 |
. . . . . 6
⊢ 𝐾 = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢)))) |
28 | 16, 27 | eqtrdi 2792 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐺 = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢))))) |
29 | | functhinc.1 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
30 | 29 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
31 | 9, 9, 30 | functhinclem2 46381 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → (((𝐹‘𝑎)𝐽(𝐹‘𝑎)) = ∅ → (𝑎𝐻𝑎) = ∅)) |
32 | 2, 7, 7, 3, 4 | thincmo 46368 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑎))) |
33 | 9, 9, 15, 28, 31, 32 | functhinclem3 46382 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ((𝑎𝐺𝑎)‘( 1 ‘𝑎)) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑎))) |
34 | 2, 3, 4, 7, 8, 33 | thincid 46372 |
. . 3
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎))) |
35 | 7 | ad2antrr 724 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹‘𝑎) ∈ 𝐶) |
36 | 5 | ad4antr 730 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐹:𝐵⟶𝐶) |
37 | | simplrr 776 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑐 ∈ 𝐵) |
38 | 36, 37 | ffvelcdmd 6994 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹‘𝑐) ∈ 𝐶) |
39 | 9 | ad2antrr 724 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑎 ∈ 𝐵) |
40 | | functhinclem4.x |
. . . . . . . 8
⊢ · =
(comp‘𝐷) |
41 | 13 | ad4antr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐷 ∈ Cat) |
42 | | simplrl 775 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑏 ∈ 𝐵) |
43 | | simprl 769 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑚 ∈ (𝑎𝐻𝑏)) |
44 | | simprr 771 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑛 ∈ (𝑏𝐻𝑐)) |
45 | 10, 11, 40, 41, 39, 42, 37, 43, 44 | catcocl 17439 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚) ∈ (𝑎𝐻𝑐)) |
46 | 28 | ad2antrr 724 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐺 = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢))))) |
47 | 29 | ad4antr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
48 | 39, 37, 47 | functhinclem2 46381 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹‘𝑎)𝐽(𝐹‘𝑐)) = ∅ → (𝑎𝐻𝑐) = ∅)) |
49 | 1 | ad4antr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ ThinCat) |
50 | 49, 35, 38, 3, 4 | thincmo 46368 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑐))) |
51 | 39, 37, 45, 46, 48, 50 | functhinclem3 46382 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑐))) |
52 | | functhinclem4.o |
. . . . . . 7
⊢ 𝑂 = (comp‘𝐸) |
53 | 2 | thinccd 46364 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ Cat) |
54 | 53 | ad2antrr 724 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ Cat) |
55 | 36, 42 | ffvelcdmd 6994 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹‘𝑏) ∈ 𝐶) |
56 | 39, 42, 47 | functhinclem2 46381 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹‘𝑎)𝐽(𝐹‘𝑏)) = ∅ → (𝑎𝐻𝑏) = ∅)) |
57 | 49, 35, 55, 3, 4 | thincmo 46368 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑏))) |
58 | 39, 42, 43, 46, 56, 57 | functhinclem3 46382 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑏)‘𝑚) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑏))) |
59 | 42, 37, 47 | functhinclem2 46381 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹‘𝑏)𝐽(𝐹‘𝑐)) = ∅ → (𝑏𝐻𝑐) = ∅)) |
60 | 49, 55, 38, 3, 4 | thincmo 46368 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑏)𝐽(𝐹‘𝑐))) |
61 | 42, 37, 44, 46, 59, 60 | functhinclem3 46382 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑏𝐺𝑐)‘𝑛) ∈ ((𝐹‘𝑏)𝐽(𝐹‘𝑐))) |
62 | 3, 4, 52, 54, 35, 55, 38, 58, 61 | catcocl 17439 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑐))) |
63 | 35, 38, 51, 62, 3, 4, 49 | thincmo2 46367 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚))) |
64 | 63 | ralrimivva 3194 |
. . . 4
⊢ ((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚))) |
65 | 64 | ralrimivva 3194 |
. . 3
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚))) |
66 | 34, 65 | jca 513 |
. 2
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) |
67 | 66 | ralrimiva 3140 |
1
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) |