| Step | Hyp | Ref
| Expression |
| 1 | | functhinc.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ ThinCat) |
| 2 | 1 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ ThinCat) |
| 3 | | functhinc.c |
. . . 4
⊢ 𝐶 = (Base‘𝐸) |
| 4 | | functhinc.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐸) |
| 5 | | functhinc.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → 𝐹:𝐵⟶𝐶) |
| 7 | 6 | ffvelcdmda 7084 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ 𝐶) |
| 8 | | functhinclem4.i |
. . . 4
⊢ 𝐼 = (Id‘𝐸) |
| 9 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 10 | | functhinc.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
| 11 | | functhinc.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐷) |
| 12 | | functhinclem4.1 |
. . . . . 6
⊢ 1 =
(Id‘𝐷) |
| 13 | | functhinc.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 14 | 13 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐷 ∈ Cat) |
| 15 | 10, 11, 12, 14, 9 | catidcl 17696 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ( 1 ‘𝑎) ∈ (𝑎𝐻𝑎)) |
| 16 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐺 = 𝐾) |
| 17 | | functhinc.k |
. . . . . . 7
⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 18 | | oveq1 7420 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → (𝑥𝐻𝑦) = (𝑣𝐻𝑦)) |
| 19 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (𝐹‘𝑥) = (𝐹‘𝑣)) |
| 20 | 19 | oveq1d 7428 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑣)𝐽(𝐹‘𝑦))) |
| 21 | 18, 20 | xpeq12d 5696 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) = ((𝑣𝐻𝑦) × ((𝐹‘𝑣)𝐽(𝐹‘𝑦)))) |
| 22 | | oveq2 7421 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑣𝐻𝑦) = (𝑣𝐻𝑢)) |
| 23 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (𝐹‘𝑦) = (𝐹‘𝑢)) |
| 24 | 23 | oveq2d 7429 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → ((𝐹‘𝑣)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑣)𝐽(𝐹‘𝑢))) |
| 25 | 22, 24 | xpeq12d 5696 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝑣𝐻𝑦) × ((𝐹‘𝑣)𝐽(𝐹‘𝑦))) = ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢)))) |
| 26 | 21, 25 | cbvmpov 7510 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢)))) |
| 27 | 17, 26 | eqtri 2757 |
. . . . . 6
⊢ 𝐾 = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢)))) |
| 28 | 16, 27 | eqtrdi 2785 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐺 = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢))))) |
| 29 | | functhinc.1 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
| 30 | 29 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
| 31 | 9, 9, 30 | functhinclem2 49072 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → (((𝐹‘𝑎)𝐽(𝐹‘𝑎)) = ∅ → (𝑎𝐻𝑎) = ∅)) |
| 32 | 2, 7, 7, 3, 4 | thincmo 49055 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑎))) |
| 33 | 9, 9, 15, 28, 31, 32 | functhinclem3 49073 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ((𝑎𝐺𝑎)‘( 1 ‘𝑎)) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑎))) |
| 34 | 2, 3, 4, 7, 8, 33 | thincid 49059 |
. . 3
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎))) |
| 35 | 7 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹‘𝑎) ∈ 𝐶) |
| 36 | 5 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐹:𝐵⟶𝐶) |
| 37 | | simplrr 777 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑐 ∈ 𝐵) |
| 38 | 36, 37 | ffvelcdmd 7085 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹‘𝑐) ∈ 𝐶) |
| 39 | 9 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑎 ∈ 𝐵) |
| 40 | | functhinclem4.x |
. . . . . . . 8
⊢ · =
(comp‘𝐷) |
| 41 | 13 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐷 ∈ Cat) |
| 42 | | simplrl 776 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑏 ∈ 𝐵) |
| 43 | | simprl 770 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑚 ∈ (𝑎𝐻𝑏)) |
| 44 | | simprr 772 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝑛 ∈ (𝑏𝐻𝑐)) |
| 45 | 10, 11, 40, 41, 39, 42, 37, 43, 44 | catcocl 17699 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚) ∈ (𝑎𝐻𝑐)) |
| 46 | 28 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐺 = (𝑣 ∈ 𝐵, 𝑢 ∈ 𝐵 ↦ ((𝑣𝐻𝑢) × ((𝐹‘𝑣)𝐽(𝐹‘𝑢))))) |
| 47 | 29 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
| 48 | 39, 37, 47 | functhinclem2 49072 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹‘𝑎)𝐽(𝐹‘𝑐)) = ∅ → (𝑎𝐻𝑐) = ∅)) |
| 49 | 1 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ ThinCat) |
| 50 | 49, 35, 38, 3, 4 | thincmo 49055 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑐))) |
| 51 | 39, 37, 45, 46, 48, 50 | functhinclem3 49073 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑐))) |
| 52 | | functhinclem4.o |
. . . . . . 7
⊢ 𝑂 = (comp‘𝐸) |
| 53 | 2 | thinccd 49050 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ Cat) |
| 54 | 53 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → 𝐸 ∈ Cat) |
| 55 | 36, 42 | ffvelcdmd 7085 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (𝐹‘𝑏) ∈ 𝐶) |
| 56 | 39, 42, 47 | functhinclem2 49072 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹‘𝑎)𝐽(𝐹‘𝑏)) = ∅ → (𝑎𝐻𝑏) = ∅)) |
| 57 | 49, 35, 55, 3, 4 | thincmo 49055 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑏))) |
| 58 | 39, 42, 43, 46, 56, 57 | functhinclem3 49073 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑏)‘𝑚) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑏))) |
| 59 | 42, 37, 47 | functhinclem2 49072 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝐹‘𝑏)𝐽(𝐹‘𝑐)) = ∅ → (𝑏𝐻𝑐) = ∅)) |
| 60 | 49, 55, 38, 3, 4 | thincmo 49055 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ∃*𝑝 𝑝 ∈ ((𝐹‘𝑏)𝐽(𝐹‘𝑐))) |
| 61 | 42, 37, 44, 46, 59, 60 | functhinclem3 49073 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑏𝐺𝑐)‘𝑛) ∈ ((𝐹‘𝑏)𝐽(𝐹‘𝑐))) |
| 62 | 3, 4, 52, 54, 35, 55, 38, 58, 61 | catcocl 17699 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)) ∈ ((𝐹‘𝑎)𝐽(𝐹‘𝑐))) |
| 63 | 35, 38, 51, 62, 3, 4, 49 | thincmo2 49053 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑚 ∈ (𝑎𝐻𝑏) ∧ 𝑛 ∈ (𝑏𝐻𝑐))) → ((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚))) |
| 64 | 63 | ralrimivva 3189 |
. . . 4
⊢ ((((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚))) |
| 65 | 64 | ralrimivva 3189 |
. . 3
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚))) |
| 66 | 34, 65 | jca 511 |
. 2
⊢ (((𝜑 ∧ 𝐺 = 𝐾) ∧ 𝑎 ∈ 𝐵) → (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) |
| 67 | 66 | ralrimiva 3133 |
1
⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) |