Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem3 Structured version   Visualization version   GIF version

Theorem functhinclem3 49435
Description: Lemma for functhinc 49437. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinclem3.x (𝜑𝑋𝐵)
functhinclem3.y (𝜑𝑌𝐵)
functhinclem3.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
functhinclem3.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))))
functhinclem3.1 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
functhinclem3.2 (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Assertion
Ref Expression
functhinclem3 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Distinct variable groups:   𝑛,𝐹   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑛,𝐽   𝑥,𝐽,𝑦   𝑛,𝑋   𝑥,𝑋,𝑦   𝑛,𝑌   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑥,𝑦,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem functhinclem3
StepHypRef Expression
1 functhinclem3.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))))
2 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
3 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
42, 3oveq12d 7405 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
52fveq2d 6862 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑥) = (𝐹𝑋))
63fveq2d 6862 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑦) = (𝐹𝑌))
75, 6oveq12d 7405 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
84, 7xpeq12d 5669 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))))
9 functhinclem3.x . . . 4 (𝜑𝑋𝐵)
10 functhinclem3.y . . . 4 (𝜑𝑌𝐵)
11 ovex 7420 . . . . . 6 (𝑋𝐻𝑌) ∈ V
12 ovex 7420 . . . . . 6 ((𝐹𝑋)𝐽(𝐹𝑌)) ∈ V
1311, 12xpex 7729 . . . . 5 ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))) ∈ V
1413a1i 11 . . . 4 (𝜑 → ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))) ∈ V)
151, 8, 9, 10, 14ovmpod 7541 . . 3 (𝜑 → (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))))
16 eqid 2729 . . . 4 ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌)))
17 functhinclem3.1 . . . 4 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
18 functhinclem3.2 . . . 4 (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
1916, 17, 18mofeu 48836 . . 3 (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)) ↔ (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌)))))
2015, 19mpbird 257 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
21 functhinclem3.m . 2 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
2220, 21ffvelcdmd 7057 1 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  Vcvv 3447  c0 4296   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  functhinclem4  49436
  Copyright terms: Public domain W3C validator