| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functhinclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for functhinc 49430. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| functhinclem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| functhinclem3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| functhinclem3.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
| functhinclem3.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) |
| functhinclem3.1 | ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
| functhinclem3.2 | ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Ref | Expression |
|---|---|
| functhinclem3 | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinclem3.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 3 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 4 | 2, 3 | oveq12d 7387 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
| 5 | 2 | fveq2d 6844 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 6 | 3 | fveq2d 6844 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 7 | 5, 6 | oveq12d 7387 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 8 | 4, 7 | xpeq12d 5662 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 9 | functhinclem3.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | functhinclem3.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 11 | ovex 7402 | . . . . . 6 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 12 | ovex 7402 | . . . . . 6 ⊢ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∈ V | |
| 13 | 11, 12 | xpex 7709 | . . . . 5 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V) |
| 15 | 1, 8, 9, 10, 14 | ovmpod 7521 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 16 | eqid 2729 | . . . 4 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
| 17 | functhinclem3.1 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | |
| 18 | functhinclem3.2 | . . . 4 ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
| 19 | 16, 17, 18 | mofeu 48829 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))))) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 21 | functhinclem3.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) | |
| 22 | 20, 21 | ffvelcdmd 7039 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 Vcvv 3444 ∅c0 4292 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: functhinclem4 49429 |
| Copyright terms: Public domain | W3C validator |