![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > functhinclem3 | Structured version Visualization version GIF version |
Description: Lemma for functhinc 48712. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
functhinclem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
functhinclem3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
functhinclem3.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
functhinclem3.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) |
functhinclem3.1 | ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
functhinclem3.2 | ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Ref | Expression |
---|---|
functhinclem3 | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | functhinclem3.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) | |
2 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
3 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
4 | 2, 3 | oveq12d 7466 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
5 | 2 | fveq2d 6924 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
6 | 3 | fveq2d 6924 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
7 | 5, 6 | oveq12d 7466 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
8 | 4, 7 | xpeq12d 5731 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
9 | functhinclem3.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | functhinclem3.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | ovex 7481 | . . . . . 6 ⊢ (𝑋𝐻𝑌) ∈ V | |
12 | ovex 7481 | . . . . . 6 ⊢ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∈ V | |
13 | 11, 12 | xpex 7788 | . . . . 5 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V) |
15 | 1, 8, 9, 10, 14 | ovmpod 7602 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
16 | eqid 2740 | . . . 4 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
17 | functhinclem3.1 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | |
18 | functhinclem3.2 | . . . 4 ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
19 | 16, 17, 18 | mofeu 48561 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))))) |
20 | 15, 19 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
21 | functhinclem3.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) | |
22 | 20, 21 | ffvelcdmd 7119 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 Vcvv 3488 ∅c0 4352 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: functhinclem4 48711 |
Copyright terms: Public domain | W3C validator |