![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > functhinclem3 | Structured version Visualization version GIF version |
Description: Lemma for functhinc 47752. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
functhinclem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
functhinclem3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
functhinclem3.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
functhinclem3.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) |
functhinclem3.1 | ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
functhinclem3.2 | ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Ref | Expression |
---|---|
functhinclem3 | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | functhinclem3.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) | |
2 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
3 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
4 | 2, 3 | oveq12d 7429 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
5 | 2 | fveq2d 6894 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
6 | 3 | fveq2d 6894 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
7 | 5, 6 | oveq12d 7429 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
8 | 4, 7 | xpeq12d 5706 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
9 | functhinclem3.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | functhinclem3.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | ovex 7444 | . . . . . 6 ⊢ (𝑋𝐻𝑌) ∈ V | |
12 | ovex 7444 | . . . . . 6 ⊢ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∈ V | |
13 | 11, 12 | xpex 7742 | . . . . 5 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V) |
15 | 1, 8, 9, 10, 14 | ovmpod 7562 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
16 | eqid 2730 | . . . 4 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
17 | functhinclem3.1 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | |
18 | functhinclem3.2 | . . . 4 ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
19 | 16, 17, 18 | mofeu 47601 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))))) |
20 | 15, 19 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
21 | functhinclem3.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) | |
22 | 20, 21 | ffvelcdmd 7086 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃*wmo 2530 Vcvv 3472 ∅c0 4321 × cxp 5673 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: functhinclem4 47751 |
Copyright terms: Public domain | W3C validator |