Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinclem3 Structured version   Visualization version   GIF version

Theorem functhinclem3 46212
Description: Lemma for functhinc 46214. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinclem3.x (𝜑𝑋𝐵)
functhinclem3.y (𝜑𝑌𝐵)
functhinclem3.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
functhinclem3.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))))
functhinclem3.1 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
functhinclem3.2 (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Assertion
Ref Expression
functhinclem3 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Distinct variable groups:   𝑛,𝐹   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑛,𝐽   𝑥,𝐽,𝑦   𝑛,𝑋   𝑥,𝑋,𝑦   𝑛,𝑌   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑥,𝑦,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem functhinclem3
StepHypRef Expression
1 functhinclem3.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))))
2 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
3 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
42, 3oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
52fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑥) = (𝐹𝑋))
63fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑦) = (𝐹𝑌))
75, 6oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
84, 7xpeq12d 5611 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))))
9 functhinclem3.x . . . 4 (𝜑𝑋𝐵)
10 functhinclem3.y . . . 4 (𝜑𝑌𝐵)
11 ovex 7288 . . . . . 6 (𝑋𝐻𝑌) ∈ V
12 ovex 7288 . . . . . 6 ((𝐹𝑋)𝐽(𝐹𝑌)) ∈ V
1311, 12xpex 7581 . . . . 5 ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))) ∈ V
1413a1i 11 . . . 4 (𝜑 → ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))) ∈ V)
151, 8, 9, 10, 14ovmpod 7403 . . 3 (𝜑 → (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))))
16 eqid 2738 . . . 4 ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌))) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌)))
17 functhinclem3.1 . . . 4 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
18 functhinclem3.2 . . . 4 (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
1916, 17, 18mofeu 46063 . . 3 (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)) ↔ (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹𝑋)𝐽(𝐹𝑌)))))
2015, 19mpbird 256 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
21 functhinclem3.m . 2 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
2220, 21ffvelrnd 6944 1 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  Vcvv 3422  c0 4253   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  functhinclem4  46213
  Copyright terms: Public domain W3C validator