| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functhinclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for functhinc 49559. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| functhinclem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| functhinclem3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| functhinclem3.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
| functhinclem3.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) |
| functhinclem3.1 | ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
| functhinclem3.2 | ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Ref | Expression |
|---|---|
| functhinclem3 | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinclem3.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 3 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 4 | 2, 3 | oveq12d 7364 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
| 5 | 2 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 6 | 3 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 7 | 5, 6 | oveq12d 7364 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 8 | 4, 7 | xpeq12d 5645 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 9 | functhinclem3.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | functhinclem3.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 11 | ovex 7379 | . . . . . 6 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 12 | ovex 7379 | . . . . . 6 ⊢ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∈ V | |
| 13 | 11, 12 | xpex 7686 | . . . . 5 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ∈ V) |
| 15 | 1, 8, 9, 10, 14 | ovmpod 7498 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 16 | eqid 2731 | . . . 4 ⊢ ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
| 17 | functhinclem3.1 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | |
| 18 | functhinclem3.2 | . . . 4 ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
| 19 | 16, 17, 18 | mofeu 48958 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ (𝑋𝐺𝑌) = ((𝑋𝐻𝑌) × ((𝐹‘𝑋)𝐽(𝐹‘𝑌))))) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 21 | functhinclem3.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) | |
| 22 | 20, 21 | ffvelcdmd 7018 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 Vcvv 3436 ∅c0 4280 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: functhinclem4 49558 |
| Copyright terms: Public domain | W3C validator |