| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvres | Structured version Visualization version GIF version | ||
| Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| funcnvres | ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | df-rn 5649 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = dom ◡(𝐹 ↾ 𝐴) | |
| 3 | 1, 2 | eqtri 2752 | . . 3 ⊢ (𝐹 “ 𝐴) = dom ◡(𝐹 ↾ 𝐴) |
| 4 | 3 | reseq2i 5947 | . 2 ⊢ (◡𝐹 ↾ (𝐹 “ 𝐴)) = (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) |
| 5 | resss 5972 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 6 | cnvss 5836 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 |
| 8 | funssres 6560 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) | |
| 9 | 7, 8 | mpan2 691 | . 2 ⊢ (Fun ◡𝐹 → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) |
| 10 | 4, 9 | eqtr2id 2777 | 1 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 |
| This theorem is referenced by: cnvresid 6595 funcnvres2 6596 f1orescnv 6815 f1imacnv 6816 sbthlem4 9054 fpwwe2lem5 10588 fpwwe2lem8 10591 hmeores 23658 dvcnvrelem2 25923 dfrelog 26474 efopnlem2 26566 diophrw 42747 |
| Copyright terms: Public domain | W3C validator |