Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcnvres | Structured version Visualization version GIF version |
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
funcnvres | ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5601 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | df-rn 5599 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = dom ◡(𝐹 ↾ 𝐴) | |
3 | 1, 2 | eqtri 2767 | . . 3 ⊢ (𝐹 “ 𝐴) = dom ◡(𝐹 ↾ 𝐴) |
4 | 3 | reseq2i 5885 | . 2 ⊢ (◡𝐹 ↾ (𝐹 “ 𝐴)) = (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) |
5 | resss 5913 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
6 | cnvss 5778 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 |
8 | funssres 6474 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) | |
9 | 7, 8 | mpan2 687 | . 2 ⊢ (Fun ◡𝐹 → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) |
10 | 4, 9 | eqtr2id 2792 | 1 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3891 ◡ccnv 5587 dom cdm 5588 ran crn 5589 ↾ cres 5590 “ cima 5591 Fun wfun 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 |
This theorem is referenced by: cnvresid 6509 funcnvres2 6510 f1orescnv 6727 f1imacnv 6728 sbthlem4 8842 fpwwe2lem5 10375 fpwwe2lem8 10378 hmeores 22903 dvcnvrelem2 25163 dfrelog 25702 efopnlem2 25793 diophrw 40561 |
Copyright terms: Public domain | W3C validator |