![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvres | Structured version Visualization version GIF version |
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
funcnvres | ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5679 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | df-rn 5677 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = dom ◡(𝐹 ↾ 𝐴) | |
3 | 1, 2 | eqtri 2752 | . . 3 ⊢ (𝐹 “ 𝐴) = dom ◡(𝐹 ↾ 𝐴) |
4 | 3 | reseq2i 5968 | . 2 ⊢ (◡𝐹 ↾ (𝐹 “ 𝐴)) = (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) |
5 | resss 5996 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
6 | cnvss 5862 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 |
8 | funssres 6582 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) | |
9 | 7, 8 | mpan2 688 | . 2 ⊢ (Fun ◡𝐹 → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) |
10 | 4, 9 | eqtr2id 2777 | 1 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⊆ wss 3940 ◡ccnv 5665 dom cdm 5666 ran crn 5667 ↾ cres 5668 “ cima 5669 Fun wfun 6527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-fun 6535 |
This theorem is referenced by: cnvresid 6617 funcnvres2 6618 f1orescnv 6838 f1imacnv 6839 sbthlem4 9081 fpwwe2lem5 10625 fpwwe2lem8 10628 hmeores 23596 dvcnvrelem2 25872 dfrelog 26415 efopnlem2 26506 diophrw 41952 |
Copyright terms: Public domain | W3C validator |