MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres Structured version   Visualization version   GIF version

Theorem funcnvres 6571
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 5640 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
2 df-rn 5638 . . . 4 ran (𝐹𝐴) = dom (𝐹𝐴)
31, 2eqtri 2765 . . 3 (𝐹𝐴) = dom (𝐹𝐴)
43reseq2i 5927 . 2 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ dom (𝐹𝐴))
5 resss 5955 . . . 4 (𝐹𝐴) ⊆ 𝐹
6 cnvss 5821 . . . 4 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
75, 6ax-mp 5 . . 3 (𝐹𝐴) ⊆ 𝐹
8 funssres 6537 . . 3 ((Fun 𝐹(𝐹𝐴) ⊆ 𝐹) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
97, 8mpan2 689 . 2 (Fun 𝐹 → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
104, 9eqtr2id 2790 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3905  ccnv 5626  dom cdm 5627  ran crn 5628  cres 5629  cima 5630  Fun wfun 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pr 5379
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-br 5101  df-opab 5163  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-fun 6490
This theorem is referenced by:  cnvresid  6572  funcnvres2  6573  f1orescnv  6791  f1imacnv  6792  sbthlem4  8960  fpwwe2lem5  10501  fpwwe2lem8  10504  hmeores  23032  dvcnvrelem2  25292  dfrelog  25831  efopnlem2  25922  diophrw  40894
  Copyright terms: Public domain W3C validator