MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres Structured version   Visualization version   GIF version

Theorem funcnvres 6619
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 5672 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
2 df-rn 5670 . . . 4 ran (𝐹𝐴) = dom (𝐹𝐴)
31, 2eqtri 2759 . . 3 (𝐹𝐴) = dom (𝐹𝐴)
43reseq2i 5968 . 2 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ dom (𝐹𝐴))
5 resss 5993 . . . 4 (𝐹𝐴) ⊆ 𝐹
6 cnvss 5857 . . . 4 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
75, 6ax-mp 5 . . 3 (𝐹𝐴) ⊆ 𝐹
8 funssres 6585 . . 3 ((Fun 𝐹(𝐹𝐴) ⊆ 𝐹) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
97, 8mpan2 691 . 2 (Fun 𝐹 → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
104, 9eqtr2id 2784 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3931  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538
This theorem is referenced by:  cnvresid  6620  funcnvres2  6621  f1orescnv  6838  f1imacnv  6839  sbthlem4  9105  fpwwe2lem5  10654  fpwwe2lem8  10657  hmeores  23714  dvcnvrelem2  25980  dfrelog  26531  efopnlem2  26623  diophrw  42749
  Copyright terms: Public domain W3C validator