| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvres | Structured version Visualization version GIF version | ||
| Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| funcnvres | ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5629 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | df-rn 5627 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = dom ◡(𝐹 ↾ 𝐴) | |
| 3 | 1, 2 | eqtri 2754 | . . 3 ⊢ (𝐹 “ 𝐴) = dom ◡(𝐹 ↾ 𝐴) |
| 4 | 3 | reseq2i 5925 | . 2 ⊢ (◡𝐹 ↾ (𝐹 “ 𝐴)) = (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) |
| 5 | resss 5950 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 6 | cnvss 5812 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 |
| 8 | funssres 6525 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) | |
| 9 | 7, 8 | mpan2 691 | . 2 ⊢ (Fun ◡𝐹 → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) |
| 10 | 4, 9 | eqtr2id 2779 | 1 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ↾ cres 5618 “ cima 5619 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 |
| This theorem is referenced by: cnvresid 6560 funcnvres2 6561 f1orescnv 6778 f1imacnv 6779 sbthlem4 9003 fpwwe2lem5 10523 fpwwe2lem8 10526 hmeores 23684 dvcnvrelem2 25948 dfrelog 26499 efopnlem2 26591 diophrw 42791 |
| Copyright terms: Public domain | W3C validator |