MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres Structured version   Visualization version   GIF version

Theorem funcnvres 6616
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 5679 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
2 df-rn 5677 . . . 4 ran (𝐹𝐴) = dom (𝐹𝐴)
31, 2eqtri 2752 . . 3 (𝐹𝐴) = dom (𝐹𝐴)
43reseq2i 5968 . 2 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ dom (𝐹𝐴))
5 resss 5996 . . . 4 (𝐹𝐴) ⊆ 𝐹
6 cnvss 5862 . . . 4 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
75, 6ax-mp 5 . . 3 (𝐹𝐴) ⊆ 𝐹
8 funssres 6582 . . 3 ((Fun 𝐹(𝐹𝐴) ⊆ 𝐹) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
97, 8mpan2 688 . 2 (Fun 𝐹 → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
104, 9eqtr2id 2777 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wss 3940  ccnv 5665  dom cdm 5666  ran crn 5667  cres 5668  cima 5669  Fun wfun 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-fun 6535
This theorem is referenced by:  cnvresid  6617  funcnvres2  6618  f1orescnv  6838  f1imacnv  6839  sbthlem4  9081  fpwwe2lem5  10625  fpwwe2lem8  10628  hmeores  23596  dvcnvrelem2  25872  dfrelog  26415  efopnlem2  26506  diophrw  41952
  Copyright terms: Public domain W3C validator