Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ssf1 | Structured version Visualization version GIF version |
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
f1ssf1 | ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funssres 6385 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
2 | funres11 6418 | . . . . . . 7 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ dom 𝐺)) | |
3 | cnveq 5720 | . . . . . . . 8 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → ◡𝐺 = ◡(𝐹 ↾ dom 𝐺)) | |
4 | 3 | funeqd 6363 | . . . . . . 7 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐺 ↔ Fun ◡(𝐹 ↾ dom 𝐺))) |
5 | 2, 4 | syl5ibr 249 | . . . . . 6 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐹 → Fun ◡𝐺)) |
6 | 5 | eqcoms 2767 | . . . . 5 ⊢ ((𝐹 ↾ dom 𝐺) = 𝐺 → (Fun ◡𝐹 → Fun ◡𝐺)) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (Fun ◡𝐹 → Fun ◡𝐺)) |
8 | 7 | ex 416 | . . 3 ⊢ (Fun 𝐹 → (𝐺 ⊆ 𝐹 → (Fun ◡𝐹 → Fun ◡𝐺))) |
9 | 8 | com23 86 | . 2 ⊢ (Fun 𝐹 → (Fun ◡𝐹 → (𝐺 ⊆ 𝐹 → Fun ◡𝐺))) |
10 | 9 | 3imp 1109 | 1 ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ⊆ wss 3861 ◡ccnv 5528 dom cdm 5529 ↾ cres 5531 Fun wfun 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5038 df-opab 5100 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-res 5541 df-fun 6343 |
This theorem is referenced by: subusgr 27193 |
Copyright terms: Public domain | W3C validator |