Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ssf1 | Structured version Visualization version GIF version |
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
f1ssf1 | ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funssres 6462 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
2 | funres11 6495 | . . . . . . 7 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ dom 𝐺)) | |
3 | cnveq 5771 | . . . . . . . 8 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → ◡𝐺 = ◡(𝐹 ↾ dom 𝐺)) | |
4 | 3 | funeqd 6440 | . . . . . . 7 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐺 ↔ Fun ◡(𝐹 ↾ dom 𝐺))) |
5 | 2, 4 | syl5ibr 245 | . . . . . 6 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐹 → Fun ◡𝐺)) |
6 | 5 | eqcoms 2746 | . . . . 5 ⊢ ((𝐹 ↾ dom 𝐺) = 𝐺 → (Fun ◡𝐹 → Fun ◡𝐺)) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (Fun ◡𝐹 → Fun ◡𝐺)) |
8 | 7 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐺 ⊆ 𝐹 → (Fun ◡𝐹 → Fun ◡𝐺))) |
9 | 8 | com23 86 | . 2 ⊢ (Fun 𝐹 → (Fun ◡𝐹 → (𝐺 ⊆ 𝐹 → Fun ◡𝐺))) |
10 | 9 | 3imp 1109 | 1 ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-fun 6420 |
This theorem is referenced by: subusgr 27559 |
Copyright terms: Public domain | W3C validator |