MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssf1 Structured version   Visualization version   GIF version

Theorem f1ssf1 6790
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020.)
Assertion
Ref Expression
f1ssf1 ((Fun 𝐹 ∧ Fun 𝐹𝐺𝐹) → Fun 𝐺)

Proof of Theorem f1ssf1
StepHypRef Expression
1 funssres 6520 . . . . 5 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
2 funres11 6553 . . . . . . 7 (Fun 𝐹 → Fun (𝐹 ↾ dom 𝐺))
3 cnveq 5808 . . . . . . . 8 (𝐺 = (𝐹 ↾ dom 𝐺) → 𝐺 = (𝐹 ↾ dom 𝐺))
43funeqd 6498 . . . . . . 7 (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun 𝐺 ↔ Fun (𝐹 ↾ dom 𝐺)))
52, 4imbitrrid 246 . . . . . 6 (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun 𝐹 → Fun 𝐺))
65eqcoms 2739 . . . . 5 ((𝐹 ↾ dom 𝐺) = 𝐺 → (Fun 𝐹 → Fun 𝐺))
71, 6syl 17 . . . 4 ((Fun 𝐹𝐺𝐹) → (Fun 𝐹 → Fun 𝐺))
87ex 412 . . 3 (Fun 𝐹 → (𝐺𝐹 → (Fun 𝐹 → Fun 𝐺)))
98com23 86 . 2 (Fun 𝐹 → (Fun 𝐹 → (𝐺𝐹 → Fun 𝐺)))
1093imp 1110 1 ((Fun 𝐹 ∧ Fun 𝐹𝐺𝐹) → Fun 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wss 3897  ccnv 5610  dom cdm 5611  cres 5613  Fun wfun 6470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-fun 6478
This theorem is referenced by:  subusgr  29262
  Copyright terms: Public domain W3C validator