![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ssf1 | Structured version Visualization version GIF version |
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
f1ssf1 | ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funssres 6612 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
2 | funres11 6645 | . . . . . . 7 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ dom 𝐺)) | |
3 | cnveq 5887 | . . . . . . . 8 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → ◡𝐺 = ◡(𝐹 ↾ dom 𝐺)) | |
4 | 3 | funeqd 6590 | . . . . . . 7 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐺 ↔ Fun ◡(𝐹 ↾ dom 𝐺))) |
5 | 2, 4 | imbitrrid 246 | . . . . . 6 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐹 → Fun ◡𝐺)) |
6 | 5 | eqcoms 2743 | . . . . 5 ⊢ ((𝐹 ↾ dom 𝐺) = 𝐺 → (Fun ◡𝐹 → Fun ◡𝐺)) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (Fun ◡𝐹 → Fun ◡𝐺)) |
8 | 7 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐺 ⊆ 𝐹 → (Fun ◡𝐹 → Fun ◡𝐺))) |
9 | 8 | com23 86 | . 2 ⊢ (Fun 𝐹 → (Fun ◡𝐹 → (𝐺 ⊆ 𝐹 → Fun ◡𝐺))) |
10 | 9 | 3imp 1110 | 1 ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ⊆ wss 3963 ◡ccnv 5688 dom cdm 5689 ↾ cres 5691 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-fun 6565 |
This theorem is referenced by: subusgr 29321 |
Copyright terms: Public domain | W3C validator |