MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssf1 Structured version   Visualization version   GIF version

Theorem f1ssf1 6832
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020.)
Assertion
Ref Expression
f1ssf1 ((Fun 𝐹 ∧ Fun 𝐹𝐺𝐹) → Fun 𝐺)

Proof of Theorem f1ssf1
StepHypRef Expression
1 funssres 6560 . . . . 5 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
2 funres11 6593 . . . . . . 7 (Fun 𝐹 → Fun (𝐹 ↾ dom 𝐺))
3 cnveq 5837 . . . . . . . 8 (𝐺 = (𝐹 ↾ dom 𝐺) → 𝐺 = (𝐹 ↾ dom 𝐺))
43funeqd 6538 . . . . . . 7 (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun 𝐺 ↔ Fun (𝐹 ↾ dom 𝐺)))
52, 4imbitrrid 246 . . . . . 6 (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun 𝐹 → Fun 𝐺))
65eqcoms 2737 . . . . 5 ((𝐹 ↾ dom 𝐺) = 𝐺 → (Fun 𝐹 → Fun 𝐺))
71, 6syl 17 . . . 4 ((Fun 𝐹𝐺𝐹) → (Fun 𝐹 → Fun 𝐺))
87ex 412 . . 3 (Fun 𝐹 → (𝐺𝐹 → (Fun 𝐹 → Fun 𝐺)))
98com23 86 . 2 (Fun 𝐹 → (Fun 𝐹 → (𝐺𝐹 → Fun 𝐺)))
1093imp 1110 1 ((Fun 𝐹 ∧ Fun 𝐹𝐺𝐹) → Fun 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wss 3914  ccnv 5637  dom cdm 5638  cres 5640  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-fun 6513
This theorem is referenced by:  subusgr  29216
  Copyright terms: Public domain W3C validator