| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ssf1 | Structured version Visualization version GIF version | ||
| Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020.) |
| Ref | Expression |
|---|---|
| f1ssf1 | ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funssres 6609 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
| 2 | funres11 6642 | . . . . . . 7 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ dom 𝐺)) | |
| 3 | cnveq 5883 | . . . . . . . 8 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → ◡𝐺 = ◡(𝐹 ↾ dom 𝐺)) | |
| 4 | 3 | funeqd 6587 | . . . . . . 7 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐺 ↔ Fun ◡(𝐹 ↾ dom 𝐺))) |
| 5 | 2, 4 | imbitrrid 246 | . . . . . 6 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐹 → Fun ◡𝐺)) |
| 6 | 5 | eqcoms 2744 | . . . . 5 ⊢ ((𝐹 ↾ dom 𝐺) = 𝐺 → (Fun ◡𝐹 → Fun ◡𝐺)) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (Fun ◡𝐹 → Fun ◡𝐺)) |
| 8 | 7 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐺 ⊆ 𝐹 → (Fun ◡𝐹 → Fun ◡𝐺))) |
| 9 | 8 | com23 86 | . 2 ⊢ (Fun 𝐹 → (Fun ◡𝐹 → (𝐺 ⊆ 𝐹 → Fun ◡𝐺))) |
| 10 | 9 | 3imp 1110 | 1 ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ⊆ wss 3950 ◡ccnv 5683 dom cdm 5684 ↾ cres 5686 Fun wfun 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-res 5696 df-fun 6562 |
| This theorem is referenced by: subusgr 29307 |
| Copyright terms: Public domain | W3C validator |