![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ssf1 | Structured version Visualization version GIF version |
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
f1ssf1 | ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funssres 6225 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
2 | funres11 6258 | . . . . . . 7 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ dom 𝐺)) | |
3 | cnveq 5587 | . . . . . . . 8 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → ◡𝐺 = ◡(𝐹 ↾ dom 𝐺)) | |
4 | 3 | funeqd 6204 | . . . . . . 7 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐺 ↔ Fun ◡(𝐹 ↾ dom 𝐺))) |
5 | 2, 4 | syl5ibr 238 | . . . . . 6 ⊢ (𝐺 = (𝐹 ↾ dom 𝐺) → (Fun ◡𝐹 → Fun ◡𝐺)) |
6 | 5 | eqcoms 2780 | . . . . 5 ⊢ ((𝐹 ↾ dom 𝐺) = 𝐺 → (Fun ◡𝐹 → Fun ◡𝐺)) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (Fun ◡𝐹 → Fun ◡𝐺)) |
8 | 7 | ex 405 | . . 3 ⊢ (Fun 𝐹 → (𝐺 ⊆ 𝐹 → (Fun ◡𝐹 → Fun ◡𝐺))) |
9 | 8 | com23 86 | . 2 ⊢ (Fun 𝐹 → (Fun ◡𝐹 → (𝐺 ⊆ 𝐹 → Fun ◡𝐺))) |
10 | 9 | 3imp 1091 | 1 ⊢ ((Fun 𝐹 ∧ Fun ◡𝐹 ∧ 𝐺 ⊆ 𝐹) → Fun ◡𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ⊆ wss 3825 ◡ccnv 5399 dom cdm 5400 ↾ cres 5402 Fun wfun 6176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-res 5412 df-fun 6184 |
This theorem is referenced by: subusgr 26764 |
Copyright terms: Public domain | W3C validator |