| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spthispth | Structured version Visualization version GIF version | ||
| Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| spthispth | ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | funres11 6577 | . . . 4 ⊢ (Fun ◡𝑃 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 4 | imain 6585 | . . . . 5 ⊢ (Fun ◡𝑃 → (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹))))) | |
| 5 | 1e0p1 12667 | . . . . . . . . . 10 ⊢ 1 = (0 + 1) | |
| 6 | 5 | oveq1i 7379 | . . . . . . . . 9 ⊢ (1..^(♯‘𝐹)) = ((0 + 1)..^(♯‘𝐹)) |
| 7 | 6 | ineq2i 4176 | . . . . . . . 8 ⊢ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) |
| 8 | 0z 12516 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 9 | prinfzo0 13635 | . . . . . . . . 9 ⊢ (0 ∈ ℤ → ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅ |
| 11 | 7, 10 | eqtri 2752 | . . . . . . 7 ⊢ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ∅ |
| 12 | 11 | imaeq2i 6018 | . . . . . 6 ⊢ (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = (𝑃 “ ∅) |
| 13 | ima0 6037 | . . . . . 6 ⊢ (𝑃 “ ∅) = ∅ | |
| 14 | 12, 13 | eqtri 2752 | . . . . 5 ⊢ (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ∅ |
| 15 | 4, 14 | eqtr3di 2779 | . . . 4 ⊢ (Fun ◡𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
| 17 | 1, 3, 16 | 3jca 1128 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) |
| 18 | isspth 29625 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 19 | ispth 29624 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 20 | 17, 18, 19 | 3imtr4i 292 | 1 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ∅c0 4292 {cpr 4587 class class class wbr 5102 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 Fun wfun 6493 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 ℤcz 12505 ..^cfzo 13591 ♯chash 14271 Trailsctrls 29592 Pathscpths 29613 SPathscspths 29614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-trls 29594 df-pths 29617 df-spths 29618 |
| This theorem is referenced by: spthiswlk 29629 isspthonpth 29652 spthonpthon 29654 usgr2trlspth 29664 usgr2pthspth 29665 pthspthcyc 29706 wspthsnonn0vne 29820 spthcycl 35089 upgrimspths 47883 |
| Copyright terms: Public domain | W3C validator |