![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthispth | Structured version Visualization version GIF version |
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
spthispth | β’ (πΉ(SPathsβπΊ)π β πΉ(PathsβπΊ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β πΉ(TrailsβπΊ)π) | |
2 | funres11 6622 | . . . 4 β’ (Fun β‘π β Fun β‘(π βΎ (1..^(β―βπΉ)))) | |
3 | 2 | adantl 482 | . . 3 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β Fun β‘(π βΎ (1..^(β―βπΉ)))) |
4 | imain 6630 | . . . . 5 β’ (Fun β‘π β (π β ({0, (β―βπΉ)} β© (1..^(β―βπΉ)))) = ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ))))) | |
5 | 1e0p1 12715 | . . . . . . . . . 10 β’ 1 = (0 + 1) | |
6 | 5 | oveq1i 7415 | . . . . . . . . 9 β’ (1..^(β―βπΉ)) = ((0 + 1)..^(β―βπΉ)) |
7 | 6 | ineq2i 4208 | . . . . . . . 8 β’ ({0, (β―βπΉ)} β© (1..^(β―βπΉ))) = ({0, (β―βπΉ)} β© ((0 + 1)..^(β―βπΉ))) |
8 | 0z 12565 | . . . . . . . . 9 β’ 0 β β€ | |
9 | prinfzo0 13667 | . . . . . . . . 9 β’ (0 β β€ β ({0, (β―βπΉ)} β© ((0 + 1)..^(β―βπΉ))) = β ) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 β’ ({0, (β―βπΉ)} β© ((0 + 1)..^(β―βπΉ))) = β |
11 | 7, 10 | eqtri 2760 | . . . . . . 7 β’ ({0, (β―βπΉ)} β© (1..^(β―βπΉ))) = β |
12 | 11 | imaeq2i 6055 | . . . . . 6 β’ (π β ({0, (β―βπΉ)} β© (1..^(β―βπΉ)))) = (π β β ) |
13 | ima0 6073 | . . . . . 6 β’ (π β β ) = β | |
14 | 12, 13 | eqtri 2760 | . . . . 5 β’ (π β ({0, (β―βπΉ)} β© (1..^(β―βπΉ)))) = β |
15 | 4, 14 | eqtr3di 2787 | . . . 4 β’ (Fun β‘π β ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β ) |
16 | 15 | adantl 482 | . . 3 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β ) |
17 | 1, 3, 16 | 3jca 1128 | . 2 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β (πΉ(TrailsβπΊ)π β§ Fun β‘(π βΎ (1..^(β―βπΉ))) β§ ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β )) |
18 | isspth 28970 | . 2 β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) | |
19 | ispth 28969 | . 2 β’ (πΉ(PathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘(π βΎ (1..^(β―βπΉ))) β§ ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β )) | |
20 | 17, 18, 19 | 3imtr4i 291 | 1 β’ (πΉ(SPathsβπΊ)π β πΉ(PathsβπΊ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β© cin 3946 β c0 4321 {cpr 4629 class class class wbr 5147 β‘ccnv 5674 βΎ cres 5677 β cima 5678 Fun wfun 6534 βcfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 + caddc 11109 β€cz 12554 ..^cfzo 13623 β―chash 14286 Trailsctrls 28936 Pathscpths 28958 SPathscspths 28959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-trls 28938 df-pths 28962 df-spths 28963 |
This theorem is referenced by: spthiswlk 28974 isspthonpth 28995 spthonpthon 28997 usgr2trlspth 29007 usgr2pthspth 29008 wspthsnonn0vne 29160 spthcycl 34108 |
Copyright terms: Public domain | W3C validator |