| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spthispth | Structured version Visualization version GIF version | ||
| Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| spthispth | ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | funres11 6593 | . . . 4 ⊢ (Fun ◡𝑃 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 4 | imain 6601 | . . . . 5 ⊢ (Fun ◡𝑃 → (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹))))) | |
| 5 | 1e0p1 12691 | . . . . . . . . . 10 ⊢ 1 = (0 + 1) | |
| 6 | 5 | oveq1i 7397 | . . . . . . . . 9 ⊢ (1..^(♯‘𝐹)) = ((0 + 1)..^(♯‘𝐹)) |
| 7 | 6 | ineq2i 4180 | . . . . . . . 8 ⊢ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) |
| 8 | 0z 12540 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 9 | prinfzo0 13659 | . . . . . . . . 9 ⊢ (0 ∈ ℤ → ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅ |
| 11 | 7, 10 | eqtri 2752 | . . . . . . 7 ⊢ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ∅ |
| 12 | 11 | imaeq2i 6029 | . . . . . 6 ⊢ (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = (𝑃 “ ∅) |
| 13 | ima0 6048 | . . . . . 6 ⊢ (𝑃 “ ∅) = ∅ | |
| 14 | 12, 13 | eqtri 2752 | . . . . 5 ⊢ (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ∅ |
| 15 | 4, 14 | eqtr3di 2779 | . . . 4 ⊢ (Fun ◡𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
| 17 | 1, 3, 16 | 3jca 1128 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) |
| 18 | isspth 29652 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 19 | ispth 29651 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 20 | 17, 18, 19 | 3imtr4i 292 | 1 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ∅c0 4296 {cpr 4591 class class class wbr 5107 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ℤcz 12529 ..^cfzo 13615 ♯chash 14295 Trailsctrls 29618 Pathscpths 29640 SPathscspths 29641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-trls 29620 df-pths 29644 df-spths 29645 |
| This theorem is referenced by: spthiswlk 29656 isspthonpth 29679 spthonpthon 29681 usgr2trlspth 29691 usgr2pthspth 29692 pthspthcyc 29733 wspthsnonn0vne 29847 spthcycl 35116 upgrimspths 47910 |
| Copyright terms: Public domain | W3C validator |