MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthispth Structured version   Visualization version   GIF version

Theorem spthispth 29723
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
spthispth (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)

Proof of Theorem spthispth
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(Trails‘𝐺)𝑃)
2 funres11 6566 . . . 4 (Fun 𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
32adantl 481 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
4 imain 6574 . . . . 5 (Fun 𝑃 → (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5 1e0p1 12640 . . . . . . . . . 10 1 = (0 + 1)
65oveq1i 7365 . . . . . . . . 9 (1..^(♯‘𝐹)) = ((0 + 1)..^(♯‘𝐹))
76ineq2i 4166 . . . . . . . 8 ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹)))
8 0z 12490 . . . . . . . . 9 0 ∈ ℤ
9 prinfzo0 13605 . . . . . . . . 9 (0 ∈ ℤ → ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅)
108, 9ax-mp 5 . . . . . . . 8 ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅
117, 10eqtri 2756 . . . . . . 7 ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ∅
1211imaeq2i 6014 . . . . . 6 (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = (𝑃 “ ∅)
13 ima0 6033 . . . . . 6 (𝑃 “ ∅) = ∅
1412, 13eqtri 2756 . . . . 5 (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ∅
154, 14eqtr3di 2783 . . . 4 (Fun 𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
1615adantl 481 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
171, 3, 163jca 1128 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
18 isspth 29721 . 2 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
19 ispth 29720 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2017, 18, 193imtr4i 292 1 (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  c0 4282  {cpr 4579   class class class wbr 5095  ccnv 5620  cres 5623  cima 5624  Fun wfun 6483  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020  cz 12479  ..^cfzo 13561  chash 14244  Trailsctrls 29688  Pathscpths 29709  SPathscspths 29710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-trls 29690  df-pths 29713  df-spths 29714
This theorem is referenced by:  spthiswlk  29725  isspthonpth  29748  spthonpthon  29750  usgr2trlspth  29760  usgr2pthspth  29761  pthspthcyc  29802  wspthsnonn0vne  29916  spthcycl  35245  upgrimspths  48072
  Copyright terms: Public domain W3C validator