MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthispth Structured version   Visualization version   GIF version

Theorem spthispth 29661
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
spthispth (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)

Proof of Theorem spthispth
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(Trails‘𝐺)𝑃)
2 funres11 6596 . . . 4 (Fun 𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
32adantl 481 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
4 imain 6604 . . . . 5 (Fun 𝑃 → (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5 1e0p1 12698 . . . . . . . . . 10 1 = (0 + 1)
65oveq1i 7400 . . . . . . . . 9 (1..^(♯‘𝐹)) = ((0 + 1)..^(♯‘𝐹))
76ineq2i 4183 . . . . . . . 8 ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹)))
8 0z 12547 . . . . . . . . 9 0 ∈ ℤ
9 prinfzo0 13666 . . . . . . . . 9 (0 ∈ ℤ → ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅)
108, 9ax-mp 5 . . . . . . . 8 ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅
117, 10eqtri 2753 . . . . . . 7 ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ∅
1211imaeq2i 6032 . . . . . 6 (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = (𝑃 “ ∅)
13 ima0 6051 . . . . . 6 (𝑃 “ ∅) = ∅
1412, 13eqtri 2753 . . . . 5 (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ∅
154, 14eqtr3di 2780 . . . 4 (Fun 𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
1615adantl 481 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
171, 3, 163jca 1128 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
18 isspth 29659 . 2 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
19 ispth 29658 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2017, 18, 193imtr4i 292 1 (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  c0 4299  {cpr 4594   class class class wbr 5110  ccnv 5640  cres 5643  cima 5644  Fun wfun 6508  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cz 12536  ..^cfzo 13622  chash 14302  Trailsctrls 29625  Pathscpths 29647  SPathscspths 29648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-trls 29627  df-pths 29651  df-spths 29652
This theorem is referenced by:  spthiswlk  29663  isspthonpth  29686  spthonpthon  29688  usgr2trlspth  29698  usgr2pthspth  29699  pthspthcyc  29740  wspthsnonn0vne  29854  spthcycl  35123  upgrimspths  47914
  Copyright terms: Public domain W3C validator