MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthispth Structured version   Visualization version   GIF version

Theorem spthispth 29669
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
spthispth (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)

Proof of Theorem spthispth
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(Trails‘𝐺)𝑃)
2 funres11 6559 . . . 4 (Fun 𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
32adantl 481 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
4 imain 6567 . . . . 5 (Fun 𝑃 → (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5 1e0p1 12633 . . . . . . . . . 10 1 = (0 + 1)
65oveq1i 7359 . . . . . . . . 9 (1..^(♯‘𝐹)) = ((0 + 1)..^(♯‘𝐹))
76ineq2i 4168 . . . . . . . 8 ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹)))
8 0z 12482 . . . . . . . . 9 0 ∈ ℤ
9 prinfzo0 13601 . . . . . . . . 9 (0 ∈ ℤ → ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅)
108, 9ax-mp 5 . . . . . . . 8 ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅
117, 10eqtri 2752 . . . . . . 7 ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ∅
1211imaeq2i 6009 . . . . . 6 (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = (𝑃 “ ∅)
13 ima0 6028 . . . . . 6 (𝑃 “ ∅) = ∅
1412, 13eqtri 2752 . . . . 5 (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ∅
154, 14eqtr3di 2779 . . . 4 (Fun 𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
1615adantl 481 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
171, 3, 163jca 1128 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
18 isspth 29667 . 2 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
19 ispth 29666 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2017, 18, 193imtr4i 292 1 (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3902  c0 4284  {cpr 4579   class class class wbr 5092  ccnv 5618  cres 5621  cima 5622  Fun wfun 6476  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  cz 12471  ..^cfzo 13557  chash 14237  Trailsctrls 29634  Pathscpths 29655  SPathscspths 29656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-trls 29636  df-pths 29659  df-spths 29660
This theorem is referenced by:  spthiswlk  29671  isspthonpth  29694  spthonpthon  29696  usgr2trlspth  29706  usgr2pthspth  29707  pthspthcyc  29748  wspthsnonn0vne  29862  spthcycl  35102  upgrimspths  47894
  Copyright terms: Public domain W3C validator