![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthispth | Structured version Visualization version GIF version |
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
spthispth | ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(Trails‘𝐺)𝑃) | |
2 | funres11 6655 | . . . 4 ⊢ (Fun ◡𝑃 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
4 | imain 6663 | . . . . 5 ⊢ (Fun ◡𝑃 → (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹))))) | |
5 | 1e0p1 12800 | . . . . . . . . . 10 ⊢ 1 = (0 + 1) | |
6 | 5 | oveq1i 7458 | . . . . . . . . 9 ⊢ (1..^(♯‘𝐹)) = ((0 + 1)..^(♯‘𝐹)) |
7 | 6 | ineq2i 4238 | . . . . . . . 8 ⊢ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) |
8 | 0z 12650 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
9 | prinfzo0 13755 | . . . . . . . . 9 ⊢ (0 ∈ ℤ → ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ({0, (♯‘𝐹)} ∩ ((0 + 1)..^(♯‘𝐹))) = ∅ |
11 | 7, 10 | eqtri 2768 | . . . . . . 7 ⊢ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹))) = ∅ |
12 | 11 | imaeq2i 6087 | . . . . . 6 ⊢ (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = (𝑃 “ ∅) |
13 | ima0 6106 | . . . . . 6 ⊢ (𝑃 “ ∅) = ∅ | |
14 | 12, 13 | eqtri 2768 | . . . . 5 ⊢ (𝑃 “ ({0, (♯‘𝐹)} ∩ (1..^(♯‘𝐹)))) = ∅ |
15 | 4, 14 | eqtr3di 2795 | . . . 4 ⊢ (Fun ◡𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
17 | 1, 3, 16 | 3jca 1128 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) |
18 | isspth 29760 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
19 | ispth 29759 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
20 | 17, 18, 19 | 3imtr4i 292 | 1 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∅c0 4352 {cpr 4650 class class class wbr 5166 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ℤcz 12639 ..^cfzo 13711 ♯chash 14379 Trailsctrls 29726 Pathscpths 29748 SPathscspths 29749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-trls 29728 df-pths 29752 df-spths 29753 |
This theorem is referenced by: spthiswlk 29764 isspthonpth 29785 spthonpthon 29787 usgr2trlspth 29797 usgr2pthspth 29798 wspthsnonn0vne 29950 spthcycl 35097 |
Copyright terms: Public domain | W3C validator |