MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem8 Structured version   Visualization version   GIF version

Theorem sbthlem8 9086
Description: Lemma for sbth 9089. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem8 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem8
StepHypRef Expression
1 funres11 6622 . . . 4 (Fun 𝑓 → Fun (𝑓 𝐷))
2 funcnvcnv 6612 . . . . . 6 (Fun 𝑔 → Fun 𝑔)
3 funres11 6622 . . . . . 6 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
42, 3syl 17 . . . . 5 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
54ad3antrrr 728 . . . 4 ((((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → Fun (𝑔 ↾ (𝐴 𝐷)))
61, 5anim12i 613 . . 3 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))))
7 df-ima 5688 . . . . . . . 8 (𝑓 𝐷) = ran (𝑓 𝐷)
8 df-rn 5686 . . . . . . . 8 ran (𝑓 𝐷) = dom (𝑓 𝐷)
97, 8eqtr2i 2761 . . . . . . 7 dom (𝑓 𝐷) = (𝑓 𝐷)
10 df-ima 5688 . . . . . . . . 9 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
11 df-rn 5686 . . . . . . . . 9 ran (𝑔 ↾ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
1210, 11eqtri 2760 . . . . . . . 8 (𝑔 “ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
13 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
14 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1513, 14sbthlem4 9082 . . . . . . . 8 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
1612, 15eqtr3id 2786 . . . . . . 7 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
17 ineq12 4206 . . . . . . 7 ((dom (𝑓 𝐷) = (𝑓 𝐷) ∧ dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷))) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
189, 16, 17sylancr 587 . . . . . 6 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
19 disjdif 4470 . . . . . 6 ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))) = ∅
2018, 19eqtrdi 2788 . . . . 5 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
2120adantlll 716 . . . 4 ((((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
2221adantl 482 . . 3 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
23 funun 6591 . . 3 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
246, 22, 23syl2anc 584 . 2 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
25 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2625cnveqi 5872 . . . 4 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
27 cnvun 6139 . . . 4 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2826, 27eqtri 2760 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2928funeqi 6566 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
3024, 29sylibr 233 1 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2709  Vcvv 3474  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321   cuni 4907  ccnv 5674  dom cdm 5675  ran crn 5676  cres 5677  cima 5678  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6542
This theorem is referenced by:  sbthlem9  9087
  Copyright terms: Public domain W3C validator