MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem8 Structured version   Visualization version   GIF version

Theorem sbthlem8 9090
Description: Lemma for sbth 9093. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem8 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem8
StepHypRef Expression
1 funres11 6626 . . . 4 (Fun 𝑓 → Fun (𝑓 𝐷))
2 funcnvcnv 6616 . . . . . 6 (Fun 𝑔 → Fun 𝑔)
3 funres11 6626 . . . . . 6 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
42, 3syl 17 . . . . 5 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
54ad3antrrr 729 . . . 4 ((((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → Fun (𝑔 ↾ (𝐴 𝐷)))
61, 5anim12i 614 . . 3 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))))
7 df-ima 5690 . . . . . . . 8 (𝑓 𝐷) = ran (𝑓 𝐷)
8 df-rn 5688 . . . . . . . 8 ran (𝑓 𝐷) = dom (𝑓 𝐷)
97, 8eqtr2i 2762 . . . . . . 7 dom (𝑓 𝐷) = (𝑓 𝐷)
10 df-ima 5690 . . . . . . . . 9 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
11 df-rn 5688 . . . . . . . . 9 ran (𝑔 ↾ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
1210, 11eqtri 2761 . . . . . . . 8 (𝑔 “ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
13 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
14 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1513, 14sbthlem4 9086 . . . . . . . 8 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
1612, 15eqtr3id 2787 . . . . . . 7 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
17 ineq12 4208 . . . . . . 7 ((dom (𝑓 𝐷) = (𝑓 𝐷) ∧ dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷))) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
189, 16, 17sylancr 588 . . . . . 6 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
19 disjdif 4472 . . . . . 6 ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))) = ∅
2018, 19eqtrdi 2789 . . . . 5 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
2120adantlll 717 . . . 4 ((((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
2221adantl 483 . . 3 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
23 funun 6595 . . 3 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
246, 22, 23syl2anc 585 . 2 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
25 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2625cnveqi 5875 . . . 4 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
27 cnvun 6143 . . . 4 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2826, 27eqtri 2761 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2928funeqi 6570 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
3024, 29sylibr 233 1 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3475  cdif 3946  cun 3947  cin 3948  wss 3949  c0 4323   cuni 4909  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  cima 5680  Fun wfun 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546
This theorem is referenced by:  sbthlem9  9091
  Copyright terms: Public domain W3C validator