| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5293 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 3 | f1oi 6855 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 4 | dff1o3 6823 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
| 6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
| 7 | fof 6789 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 9 | fss 6721 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
| 10 | 8, 9 | mpan 690 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
| 11 | funi 6567 | . . . . . . 7 ⊢ Fun I | |
| 12 | cnvi 6130 | . . . . . . . 8 ⊢ ◡ I = I | |
| 13 | 12 | funeqi 6556 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
| 15 | funres11 6612 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
| 17 | df-f1 6535 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
| 18 | 10, 16, 17 | sylanblrc 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 20 | f1dom2g 8982 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
| 22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 I cid 5547 ◡ccnv 5653 ↾ cres 5656 Fun wfun 6524 ⟶wf 6526 –1-1→wf1 6527 –onto→wfo 6528 –1-1-onto→wf1o 6529 ≼ cdom 8955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-dom 8959 |
| This theorem is referenced by: cnvct 9046 ssctOLD 9064 undomOLD 9072 xpdom3 9082 domunsncan 9084 sucdom2OLD 9094 0domgOLD 9113 domtriord 9135 sdomel 9136 sdomdif 9137 onsdominel 9138 pwdom 9141 2pwuninel 9144 mapdom1 9154 mapdom3 9161 limenpsi 9164 phpOLD 9229 php2OLD 9230 php3OLD 9231 nndomogOLD 9233 onomeneqOLD 9236 unbnn 9302 nnsdomgOLD 9306 fodomfiOLD 9340 fidomdm 9344 hartogslem1 9554 hartogs 9556 card2on 9566 wdompwdom 9590 wdom2d 9592 wdomima2g 9598 unxpwdom2 9600 unxpwdom 9601 harwdom 9603 r1sdom 9786 tskwe 9962 carddomi2 9982 cardsdomelir 9985 cardsdomel 9986 harcard 9990 carduni 9993 cardmin2 10011 infxpenlem 10025 ssnum 10051 acnnum 10064 fodomfi2 10072 inffien 10075 alephordi 10086 dfac12lem2 10157 djudoml 10197 cdainflem 10200 djuinf 10201 unctb 10216 infunabs 10218 infdju 10219 infdif 10220 infdif2 10221 infmap2 10229 ackbij2 10254 fictb 10256 cfslb 10278 fincssdom 10335 fin67 10407 fin1a2lem12 10423 axcclem 10469 dmct 10536 brdom3 10540 brdom5 10541 brdom4 10542 imadomg 10546 fnct 10549 mptct 10550 ondomon 10575 alephval2 10584 alephadd 10589 alephmul 10590 alephexp1 10591 alephsuc3 10592 alephexp2 10593 alephreg 10594 pwcfsdom 10595 cfpwsdom 10596 canthnum 10661 pwfseqlem5 10675 pwxpndom2 10677 pwdjundom 10679 gchaleph 10683 gchaleph2 10684 gchac 10693 winainflem 10705 gchina 10711 tsksdom 10768 tskinf 10781 inttsk 10786 inar1 10787 inatsk 10790 tskord 10792 tskcard 10793 grudomon 10829 gruina 10830 axgroth2 10837 axgroth6 10840 grothac 10842 hashun2 14399 hashss 14425 hashsslei 14442 isercoll 15682 o1fsum 15827 incexc2 15852 znnen 16228 qnnen 16229 rpnnen 16243 ruc 16259 phicl2 16785 phibnd 16788 4sqlem11 16973 vdwlem11 17009 0ram 17038 mreexdomd 17659 pgpssslw 19593 fislw 19604 cctop 22942 1stcfb 23381 2ndc1stc 23387 1stcrestlem 23388 2ndcctbss 23391 2ndcdisj2 23393 2ndcsep 23395 dis2ndc 23396 csdfil 23830 ufilen 23866 opnreen 24769 rectbntr0 24770 ovolctb2 25443 uniiccdif 25529 dyadmbl 25551 opnmblALT 25554 vitali 25564 mbfimaopnlem 25606 mbfsup 25615 fta1blem 26126 aannenlem3 26288 ppiwordi 27122 musum 27151 ppiub 27165 chpub 27181 dirith2 27489 upgrex 29017 rabfodom 32432 abrexdomjm 32434 mptctf 32641 locfinreflem 33817 esumcst 34040 omsmeas 34301 sibfof 34318 subfaclefac 35144 erdszelem10 35168 snmlff 35297 finminlem 36282 iccioo01 37291 isinf2 37369 pibt2 37381 phpreu 37574 lindsdom 37584 poimirlem26 37616 mblfinlem1 37627 abrexdom 37700 heiborlem3 37783 ctbnfien 42788 pellexlem4 42802 pellexlem5 42803 ttac 43007 idomodle 43162 idomsubgmo 43164 iscard5 43507 modelaxreplem1 44951 uzct 45035 rn1st 45245 smfaddlem2 46741 smfmullem4 46771 smfpimbor1lem1 46775 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |