| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5265 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 3 | f1oi 6806 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 4 | dff1o3 6774 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
| 6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
| 7 | fof 6740 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 9 | fss 6672 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
| 10 | 8, 9 | mpan 690 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
| 11 | funi 6518 | . . . . . . 7 ⊢ Fun I | |
| 12 | cnvi 6094 | . . . . . . . 8 ⊢ ◡ I = I | |
| 13 | 12 | funeqi 6507 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
| 15 | funres11 6563 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
| 17 | df-f1 6491 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
| 18 | 10, 16, 17 | sylanblrc 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 20 | f1dom2g 8902 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
| 22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 I cid 5517 ◡ccnv 5622 ↾ cres 5625 Fun wfun 6480 ⟶wf 6482 –1-1→wf1 6483 –onto→wfo 6484 –1-1-onto→wf1o 6485 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-dom 8881 |
| This theorem is referenced by: cnvct 8966 xpdom3 8999 domunsncan 9001 domtriord 9047 sdomel 9048 sdomdif 9049 onsdominel 9050 pwdom 9053 2pwuninel 9056 mapdom1 9066 mapdom3 9073 limenpsi 9076 unbnn 9201 nnsdomgOLD 9205 fodomfiOLD 9239 fidomdm 9243 hartogslem1 9453 hartogs 9455 card2on 9465 wdompwdom 9489 wdom2d 9491 wdomima2g 9497 unxpwdom2 9499 unxpwdom 9500 harwdom 9502 r1sdom 9689 tskwe 9865 carddomi2 9885 cardsdomelir 9888 cardsdomel 9889 harcard 9893 carduni 9896 cardmin2 9914 infxpenlem 9926 ssnum 9952 acnnum 9965 fodomfi2 9973 inffien 9976 alephordi 9987 dfac12lem2 10058 djudoml 10098 cdainflem 10101 djuinf 10102 unctb 10117 infunabs 10119 infdju 10120 infdif 10121 infdif2 10122 infmap2 10130 ackbij2 10155 fictb 10157 cfslb 10179 fincssdom 10236 fin67 10308 fin1a2lem12 10324 axcclem 10370 dmct 10437 brdom3 10441 brdom5 10442 brdom4 10443 imadomg 10447 fnct 10450 mptct 10451 ondomon 10476 alephval2 10485 alephadd 10490 alephmul 10491 alephexp1 10492 alephsuc3 10493 alephexp2 10494 alephreg 10495 pwcfsdom 10496 cfpwsdom 10497 canthnum 10562 pwfseqlem5 10576 pwxpndom2 10578 pwdjundom 10580 gchaleph 10584 gchaleph2 10585 gchac 10594 winainflem 10606 gchina 10612 tsksdom 10669 tskinf 10682 inttsk 10687 inar1 10688 inatsk 10691 tskord 10693 tskcard 10694 grudomon 10730 gruina 10731 axgroth2 10738 axgroth6 10741 grothac 10743 hashun2 14309 hashss 14335 hashsslei 14352 isercoll 15594 o1fsum 15739 incexc2 15764 znnen 16140 qnnen 16141 rpnnen 16155 ruc 16171 phicl2 16698 phibnd 16701 4sqlem11 16886 vdwlem11 16922 0ram 16951 mreexdomd 17574 pgpssslw 19512 fislw 19523 cctop 22910 1stcfb 23349 2ndc1stc 23355 1stcrestlem 23356 2ndcctbss 23359 2ndcdisj2 23361 2ndcsep 23363 dis2ndc 23364 csdfil 23798 ufilen 23834 opnreen 24737 rectbntr0 24738 ovolctb2 25410 uniiccdif 25496 dyadmbl 25518 opnmblALT 25521 vitali 25531 mbfimaopnlem 25573 mbfsup 25582 fta1blem 26093 aannenlem3 26255 ppiwordi 27089 musum 27118 ppiub 27132 chpub 27148 dirith2 27456 upgrex 29056 rabfodom 32468 abrexdomjm 32470 mptctf 32679 locfinreflem 33826 esumcst 34049 omsmeas 34310 sibfof 34327 subfaclefac 35168 erdszelem10 35192 snmlff 35321 finminlem 36311 iccioo01 37320 isinf2 37398 pibt2 37410 phpreu 37603 lindsdom 37613 poimirlem26 37645 mblfinlem1 37656 abrexdom 37729 heiborlem3 37812 ctbnfien 42811 pellexlem4 42825 pellexlem5 42826 ttac 43029 idomodle 43184 idomsubgmo 43186 iscard5 43529 modelaxreplem1 44972 uzct 45061 rn1st 45271 smfaddlem2 46765 smfmullem4 46795 smfpimbor1lem1 46799 aacllem 49806 |
| Copyright terms: Public domain | W3C validator |