Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version |
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5242 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
3 | f1oi 6737 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
4 | dff1o3 6706 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
5 | 3, 4 | mpbi 229 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
7 | fof 6672 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
9 | fss 6601 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
10 | 8, 9 | mpan 686 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
11 | funi 6450 | . . . . . . 7 ⊢ Fun I | |
12 | cnvi 6034 | . . . . . . . 8 ⊢ ◡ I = I | |
13 | 12 | funeqi 6439 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
14 | 11, 13 | mpbir 230 | . . . . . 6 ⊢ Fun ◡ I |
15 | funres11 6495 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
17 | df-f1 6423 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
18 | 10, 16, 17 | sylanblrc 589 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
20 | f1dom2g 8712 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
21 | 1, 2, 19, 20 | syl3anc 1369 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 I cid 5479 ◡ccnv 5579 ↾ cres 5582 Fun wfun 6412 ⟶wf 6414 –1-1→wf1 6415 –onto→wfo 6416 –1-1-onto→wf1o 6417 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-dom 8693 |
This theorem is referenced by: cnvct 8778 ssct 8793 undom 8800 xpdom3 8810 domunsncan 8812 sucdom2 8822 0domg 8840 domtriord 8859 sdomel 8860 sdomdif 8861 onsdominel 8862 pwdom 8865 2pwuninel 8868 mapdom1 8878 mapdom3 8885 limenpsi 8888 php 8897 php2 8898 php3 8899 nndomog 8904 onomeneq 8943 unbnn 9000 nnsdomg 9003 fodomfi 9022 fidomdm 9026 pwfilemOLD 9043 hartogslem1 9231 hartogs 9233 card2on 9243 wdompwdom 9267 wdom2d 9269 wdomima2g 9275 unxpwdom2 9277 unxpwdom 9278 harwdom 9280 r1sdom 9463 tskwe 9639 carddomi2 9659 cardsdomelir 9662 cardsdomel 9663 harcard 9667 carduni 9670 cardmin2 9688 infxpenlem 9700 ssnum 9726 acnnum 9739 fodomfi2 9747 inffien 9750 alephordi 9761 dfac12lem2 9831 djudoml 9871 cdainflem 9874 djuinf 9875 unctb 9892 infunabs 9894 infdju 9895 infdif 9896 infdif2 9897 infmap2 9905 ackbij2 9930 fictb 9932 cfslb 9953 fincssdom 10010 fin67 10082 fin1a2lem12 10098 axcclem 10144 dmct 10211 brdom3 10215 brdom5 10216 brdom4 10217 imadomg 10221 fnct 10224 mptct 10225 ondomon 10250 alephval2 10259 alephadd 10264 alephmul 10265 alephexp1 10266 alephsuc3 10267 alephexp2 10268 alephreg 10269 pwcfsdom 10270 cfpwsdom 10271 canthnum 10336 pwfseqlem5 10350 pwxpndom2 10352 pwdjundom 10354 gchaleph 10358 gchaleph2 10359 gchac 10368 winainflem 10380 gchina 10386 tsksdom 10443 tskinf 10456 inttsk 10461 inar1 10462 inatsk 10465 tskord 10467 tskcard 10468 grudomon 10504 gruina 10505 axgroth2 10512 axgroth6 10515 grothac 10517 hashun2 14026 hashss 14052 hashsslei 14069 isercoll 15307 o1fsum 15453 incexc2 15478 znnen 15849 qnnen 15850 rpnnen 15864 ruc 15880 phicl2 16397 phibnd 16400 4sqlem11 16584 vdwlem11 16620 0ram 16649 mreexdomd 17275 pgpssslw 19134 fislw 19145 cctop 22064 1stcfb 22504 2ndc1stc 22510 1stcrestlem 22511 2ndcctbss 22514 2ndcdisj2 22516 2ndcsep 22518 dis2ndc 22519 csdfil 22953 ufilen 22989 opnreen 23900 rectbntr0 23901 ovolctb2 24561 uniiccdif 24647 dyadmbl 24669 opnmblALT 24672 vitali 24682 mbfimaopnlem 24724 mbfsup 24733 fta1blem 25238 aannenlem3 25395 ppiwordi 26216 musum 26245 ppiub 26257 chpub 26273 dirith2 26581 upgrex 27365 rabfodom 30752 abrexdomjm 30753 mptctf 30954 locfinreflem 31692 esumcst 31931 omsmeas 32190 sibfof 32207 subfaclefac 33038 erdszelem10 33062 snmlff 33191 finminlem 34434 iccioo01 35425 isinf2 35503 pibt2 35515 phpreu 35688 lindsdom 35698 poimirlem26 35730 mblfinlem1 35741 abrexdom 35815 heiborlem3 35898 ctbnfien 40556 pellexlem4 40570 pellexlem5 40571 ttac 40774 idomodle 40937 idomsubgmo 40939 iscard5 41039 uzct 42500 smfaddlem2 44186 smfmullem4 44215 smfpimbor1lem1 44219 aacllem 46391 |
Copyright terms: Public domain | W3C validator |