![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version |
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5341 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
3 | f1oi 6900 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
4 | dff1o3 6868 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
7 | fof 6834 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
9 | fss 6763 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
10 | 8, 9 | mpan 689 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
11 | funi 6610 | . . . . . . 7 ⊢ Fun I | |
12 | cnvi 6173 | . . . . . . . 8 ⊢ ◡ I = I | |
13 | 12 | funeqi 6599 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
15 | funres11 6655 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
17 | df-f1 6578 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
18 | 10, 16, 17 | sylanblrc 589 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
20 | f1dom2g 9029 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
21 | 1, 2, 19, 20 | syl3anc 1371 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 I cid 5592 ◡ccnv 5699 ↾ cres 5702 Fun wfun 6567 ⟶wf 6569 –1-1→wf1 6570 –onto→wfo 6571 –1-1-onto→wf1o 6572 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-dom 9005 |
This theorem is referenced by: cnvct 9099 ssctOLD 9118 undomOLD 9126 xpdom3 9136 domunsncan 9138 sucdom2OLD 9148 0domgOLD 9167 domtriord 9189 sdomel 9190 sdomdif 9191 onsdominel 9192 pwdom 9195 2pwuninel 9198 mapdom1 9208 mapdom3 9215 limenpsi 9218 phpOLD 9285 php2OLD 9286 php3OLD 9287 nndomogOLD 9289 onomeneqOLD 9292 unbnn 9360 nnsdomgOLD 9364 fodomfiOLD 9398 fidomdm 9402 pwfilemOLD 9416 hartogslem1 9611 hartogs 9613 card2on 9623 wdompwdom 9647 wdom2d 9649 wdomima2g 9655 unxpwdom2 9657 unxpwdom 9658 harwdom 9660 r1sdom 9843 tskwe 10019 carddomi2 10039 cardsdomelir 10042 cardsdomel 10043 harcard 10047 carduni 10050 cardmin2 10068 infxpenlem 10082 ssnum 10108 acnnum 10121 fodomfi2 10129 inffien 10132 alephordi 10143 dfac12lem2 10214 djudoml 10254 cdainflem 10257 djuinf 10258 unctb 10273 infunabs 10275 infdju 10276 infdif 10277 infdif2 10278 infmap2 10286 ackbij2 10311 fictb 10313 cfslb 10335 fincssdom 10392 fin67 10464 fin1a2lem12 10480 axcclem 10526 dmct 10593 brdom3 10597 brdom5 10598 brdom4 10599 imadomg 10603 fnct 10606 mptct 10607 ondomon 10632 alephval2 10641 alephadd 10646 alephmul 10647 alephexp1 10648 alephsuc3 10649 alephexp2 10650 alephreg 10651 pwcfsdom 10652 cfpwsdom 10653 canthnum 10718 pwfseqlem5 10732 pwxpndom2 10734 pwdjundom 10736 gchaleph 10740 gchaleph2 10741 gchac 10750 winainflem 10762 gchina 10768 tsksdom 10825 tskinf 10838 inttsk 10843 inar1 10844 inatsk 10847 tskord 10849 tskcard 10850 grudomon 10886 gruina 10887 axgroth2 10894 axgroth6 10897 grothac 10899 hashun2 14432 hashss 14458 hashsslei 14475 isercoll 15716 o1fsum 15861 incexc2 15886 znnen 16260 qnnen 16261 rpnnen 16275 ruc 16291 phicl2 16815 phibnd 16818 4sqlem11 17002 vdwlem11 17038 0ram 17067 mreexdomd 17707 pgpssslw 19656 fislw 19667 cctop 23034 1stcfb 23474 2ndc1stc 23480 1stcrestlem 23481 2ndcctbss 23484 2ndcdisj2 23486 2ndcsep 23488 dis2ndc 23489 csdfil 23923 ufilen 23959 opnreen 24872 rectbntr0 24873 ovolctb2 25546 uniiccdif 25632 dyadmbl 25654 opnmblALT 25657 vitali 25667 mbfimaopnlem 25709 mbfsup 25718 fta1blem 26230 aannenlem3 26390 ppiwordi 27223 musum 27252 ppiub 27266 chpub 27282 dirith2 27590 upgrex 29127 rabfodom 32533 abrexdomjm 32535 mptctf 32731 locfinreflem 33786 esumcst 34027 omsmeas 34288 sibfof 34305 subfaclefac 35144 erdszelem10 35168 snmlff 35297 finminlem 36284 iccioo01 37293 isinf2 37371 pibt2 37383 phpreu 37564 lindsdom 37574 poimirlem26 37606 mblfinlem1 37617 abrexdom 37690 heiborlem3 37773 ctbnfien 42774 pellexlem4 42788 pellexlem5 42789 ttac 42993 idomodle 43152 idomsubgmo 43154 iscard5 43498 uzct 44965 rn1st 45183 smfaddlem2 46685 smfmullem4 46715 smfpimbor1lem1 46719 aacllem 48895 |
Copyright terms: Public domain | W3C validator |