Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version |
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5271 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | simpr 486 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
3 | f1oi 6809 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
4 | dff1o3 6777 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
5 | 3, 4 | mpbi 229 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
6 | 5 | simpli 485 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
7 | fof 6743 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
9 | fss 6672 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
10 | 8, 9 | mpan 688 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
11 | funi 6520 | . . . . . . 7 ⊢ Fun I | |
12 | cnvi 6084 | . . . . . . . 8 ⊢ ◡ I = I | |
13 | 12 | funeqi 6509 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
14 | 11, 13 | mpbir 230 | . . . . . 6 ⊢ Fun ◡ I |
15 | funres11 6565 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
17 | df-f1 6488 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
18 | 10, 16, 17 | sylanblrc 591 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
19 | 18 | adantr 482 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
20 | f1dom2g 8834 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
21 | 1, 2, 19, 20 | syl3anc 1371 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
22 | 21 | expcom 415 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 Vcvv 3442 ⊆ wss 3901 class class class wbr 5096 I cid 5521 ◡ccnv 5623 ↾ cres 5626 Fun wfun 6477 ⟶wf 6479 –1-1→wf1 6480 –onto→wfo 6481 –1-1-onto→wf1o 6482 ≼ cdom 8806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-dom 8810 |
This theorem is referenced by: cnvct 8903 ssctOLD 8921 undomOLD 8929 xpdom3 8939 domunsncan 8941 sucdom2OLD 8951 0domgOLD 8970 domtriord 8992 sdomel 8993 sdomdif 8994 onsdominel 8995 pwdom 8998 2pwuninel 9001 mapdom1 9011 mapdom3 9018 limenpsi 9021 phpOLD 9091 php2OLD 9092 php3OLD 9093 nndomogOLD 9095 onomeneqOLD 9098 unbnn 9168 nnsdomgOLD 9172 fodomfi 9194 fidomdm 9198 pwfilemOLD 9215 hartogslem1 9403 hartogs 9405 card2on 9415 wdompwdom 9439 wdom2d 9441 wdomima2g 9447 unxpwdom2 9449 unxpwdom 9450 harwdom 9452 r1sdom 9635 tskwe 9811 carddomi2 9831 cardsdomelir 9834 cardsdomel 9835 harcard 9839 carduni 9842 cardmin2 9860 infxpenlem 9874 ssnum 9900 acnnum 9913 fodomfi2 9921 inffien 9924 alephordi 9935 dfac12lem2 10005 djudoml 10045 cdainflem 10048 djuinf 10049 unctb 10066 infunabs 10068 infdju 10069 infdif 10070 infdif2 10071 infmap2 10079 ackbij2 10104 fictb 10106 cfslb 10127 fincssdom 10184 fin67 10256 fin1a2lem12 10272 axcclem 10318 dmct 10385 brdom3 10389 brdom5 10390 brdom4 10391 imadomg 10395 fnct 10398 mptct 10399 ondomon 10424 alephval2 10433 alephadd 10438 alephmul 10439 alephexp1 10440 alephsuc3 10441 alephexp2 10442 alephreg 10443 pwcfsdom 10444 cfpwsdom 10445 canthnum 10510 pwfseqlem5 10524 pwxpndom2 10526 pwdjundom 10528 gchaleph 10532 gchaleph2 10533 gchac 10542 winainflem 10554 gchina 10560 tsksdom 10617 tskinf 10630 inttsk 10635 inar1 10636 inatsk 10639 tskord 10641 tskcard 10642 grudomon 10678 gruina 10679 axgroth2 10686 axgroth6 10689 grothac 10691 hashun2 14202 hashss 14228 hashsslei 14245 isercoll 15478 o1fsum 15624 incexc2 15649 znnen 16020 qnnen 16021 rpnnen 16035 ruc 16051 phicl2 16566 phibnd 16569 4sqlem11 16753 vdwlem11 16789 0ram 16818 mreexdomd 17455 pgpssslw 19315 fislw 19326 cctop 22261 1stcfb 22701 2ndc1stc 22707 1stcrestlem 22708 2ndcctbss 22711 2ndcdisj2 22713 2ndcsep 22715 dis2ndc 22716 csdfil 23150 ufilen 23186 opnreen 24099 rectbntr0 24100 ovolctb2 24761 uniiccdif 24847 dyadmbl 24869 opnmblALT 24872 vitali 24882 mbfimaopnlem 24924 mbfsup 24933 fta1blem 25438 aannenlem3 25595 ppiwordi 26416 musum 26445 ppiub 26457 chpub 26473 dirith2 26781 upgrex 27750 rabfodom 31138 abrexdomjm 31139 mptctf 31337 locfinreflem 32086 esumcst 32327 omsmeas 32588 sibfof 32605 subfaclefac 33435 erdszelem10 33459 snmlff 33588 finminlem 34644 iccioo01 35652 isinf2 35730 pibt2 35742 phpreu 35917 lindsdom 35927 poimirlem26 35959 mblfinlem1 35970 abrexdom 36044 heiborlem3 36127 ctbnfien 40953 pellexlem4 40967 pellexlem5 40968 ttac 41172 idomodle 41335 idomsubgmo 41337 iscard5 41517 uzct 42983 smfaddlem2 44691 smfmullem4 44721 smfpimbor1lem1 44725 aacllem 46923 |
Copyright terms: Public domain | W3C validator |