| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5281 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 3 | f1oi 6841 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 4 | dff1o3 6809 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
| 6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
| 7 | fof 6775 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 9 | fss 6707 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
| 10 | 8, 9 | mpan 690 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
| 11 | funi 6551 | . . . . . . 7 ⊢ Fun I | |
| 12 | cnvi 6117 | . . . . . . . 8 ⊢ ◡ I = I | |
| 13 | 12 | funeqi 6540 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
| 15 | funres11 6596 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
| 17 | df-f1 6519 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
| 18 | 10, 16, 17 | sylanblrc 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 20 | f1dom2g 8944 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
| 22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 I cid 5535 ◡ccnv 5640 ↾ cres 5643 Fun wfun 6508 ⟶wf 6510 –1-1→wf1 6511 –onto→wfo 6512 –1-1-onto→wf1o 6513 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-dom 8923 |
| This theorem is referenced by: cnvct 9008 ssctOLD 9026 undomOLD 9034 xpdom3 9044 domunsncan 9046 sucdom2OLD 9056 domtriord 9093 sdomel 9094 sdomdif 9095 onsdominel 9096 pwdom 9099 2pwuninel 9102 mapdom1 9112 mapdom3 9119 limenpsi 9122 unbnn 9250 nnsdomgOLD 9254 fodomfiOLD 9288 fidomdm 9292 hartogslem1 9502 hartogs 9504 card2on 9514 wdompwdom 9538 wdom2d 9540 wdomima2g 9546 unxpwdom2 9548 unxpwdom 9549 harwdom 9551 r1sdom 9734 tskwe 9910 carddomi2 9930 cardsdomelir 9933 cardsdomel 9934 harcard 9938 carduni 9941 cardmin2 9959 infxpenlem 9973 ssnum 9999 acnnum 10012 fodomfi2 10020 inffien 10023 alephordi 10034 dfac12lem2 10105 djudoml 10145 cdainflem 10148 djuinf 10149 unctb 10164 infunabs 10166 infdju 10167 infdif 10168 infdif2 10169 infmap2 10177 ackbij2 10202 fictb 10204 cfslb 10226 fincssdom 10283 fin67 10355 fin1a2lem12 10371 axcclem 10417 dmct 10484 brdom3 10488 brdom5 10489 brdom4 10490 imadomg 10494 fnct 10497 mptct 10498 ondomon 10523 alephval2 10532 alephadd 10537 alephmul 10538 alephexp1 10539 alephsuc3 10540 alephexp2 10541 alephreg 10542 pwcfsdom 10543 cfpwsdom 10544 canthnum 10609 pwfseqlem5 10623 pwxpndom2 10625 pwdjundom 10627 gchaleph 10631 gchaleph2 10632 gchac 10641 winainflem 10653 gchina 10659 tsksdom 10716 tskinf 10729 inttsk 10734 inar1 10735 inatsk 10738 tskord 10740 tskcard 10741 grudomon 10777 gruina 10778 axgroth2 10785 axgroth6 10788 grothac 10790 hashun2 14355 hashss 14381 hashsslei 14398 isercoll 15641 o1fsum 15786 incexc2 15811 znnen 16187 qnnen 16188 rpnnen 16202 ruc 16218 phicl2 16745 phibnd 16748 4sqlem11 16933 vdwlem11 16969 0ram 16998 mreexdomd 17617 pgpssslw 19551 fislw 19562 cctop 22900 1stcfb 23339 2ndc1stc 23345 1stcrestlem 23346 2ndcctbss 23349 2ndcdisj2 23351 2ndcsep 23353 dis2ndc 23354 csdfil 23788 ufilen 23824 opnreen 24727 rectbntr0 24728 ovolctb2 25400 uniiccdif 25486 dyadmbl 25508 opnmblALT 25511 vitali 25521 mbfimaopnlem 25563 mbfsup 25572 fta1blem 26083 aannenlem3 26245 ppiwordi 27079 musum 27108 ppiub 27122 chpub 27138 dirith2 27446 upgrex 29026 rabfodom 32441 abrexdomjm 32443 mptctf 32648 locfinreflem 33837 esumcst 34060 omsmeas 34321 sibfof 34338 subfaclefac 35170 erdszelem10 35194 snmlff 35323 finminlem 36313 iccioo01 37322 isinf2 37400 pibt2 37412 phpreu 37605 lindsdom 37615 poimirlem26 37647 mblfinlem1 37658 abrexdom 37731 heiborlem3 37814 ctbnfien 42813 pellexlem4 42827 pellexlem5 42828 ttac 43032 idomodle 43187 idomsubgmo 43189 iscard5 43532 modelaxreplem1 44975 uzct 45064 rn1st 45274 smfaddlem2 46769 smfmullem4 46799 smfpimbor1lem1 46803 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |