| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5265 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 3 | f1oi 6809 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 4 | dff1o3 6777 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
| 6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
| 7 | fof 6743 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 9 | fss 6675 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
| 10 | 8, 9 | mpan 690 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
| 11 | funi 6521 | . . . . . . 7 ⊢ Fun I | |
| 12 | cnvi 6096 | . . . . . . . 8 ⊢ ◡ I = I | |
| 13 | 12 | funeqi 6510 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
| 15 | funres11 6566 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
| 17 | df-f1 6494 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
| 18 | 10, 16, 17 | sylanblrc 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 20 | f1dom2g 8902 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
| 22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 I cid 5515 ◡ccnv 5620 ↾ cres 5623 Fun wfun 6483 ⟶wf 6485 –1-1→wf1 6486 –onto→wfo 6487 –1-1-onto→wf1o 6488 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-dom 8881 |
| This theorem is referenced by: cnvct 8967 xpdom3 8999 domunsncan 9001 domtriord 9047 sdomel 9048 sdomdif 9049 onsdominel 9050 pwdom 9053 2pwuninel 9056 mapdom1 9066 mapdom3 9073 limenpsi 9076 unbnn 9191 fodomfiOLD 9225 fidomdm 9229 hartogslem1 9439 hartogs 9441 card2on 9451 wdompwdom 9475 wdom2d 9477 wdomima2g 9483 unxpwdom2 9485 unxpwdom 9486 harwdom 9488 r1sdom 9678 tskwe 9854 carddomi2 9874 cardsdomelir 9877 cardsdomel 9878 harcard 9882 carduni 9885 cardmin2 9903 infxpenlem 9915 ssnum 9941 acnnum 9954 fodomfi2 9962 inffien 9965 alephordi 9976 dfac12lem2 10047 djudoml 10087 cdainflem 10090 djuinf 10091 unctb 10106 infunabs 10108 infdju 10109 infdif 10110 infdif2 10111 infmap2 10119 ackbij2 10144 fictb 10146 cfslb 10168 fincssdom 10225 fin67 10297 fin1a2lem12 10313 axcclem 10359 dmct 10426 brdom3 10430 brdom5 10431 brdom4 10432 imadomg 10436 fnct 10439 mptct 10440 ondomon 10465 alephval2 10474 alephadd 10479 alephmul 10480 alephexp1 10481 alephsuc3 10482 alephexp2 10483 alephreg 10484 pwcfsdom 10485 cfpwsdom 10486 canthnum 10551 pwfseqlem5 10565 pwxpndom2 10567 pwdjundom 10569 gchaleph 10573 gchaleph2 10574 gchac 10583 winainflem 10595 gchina 10601 tsksdom 10658 tskinf 10671 inttsk 10676 inar1 10677 inatsk 10680 tskord 10682 tskcard 10683 grudomon 10719 gruina 10720 axgroth2 10727 axgroth6 10730 grothac 10732 hashun2 14297 hashss 14323 hashsslei 14340 isercoll 15582 o1fsum 15727 incexc2 15752 znnen 16128 qnnen 16129 rpnnen 16143 ruc 16159 phicl2 16686 phibnd 16689 4sqlem11 16874 vdwlem11 16910 0ram 16939 mreexdomd 17563 pgpssslw 19534 fislw 19545 cctop 22941 1stcfb 23380 2ndc1stc 23386 1stcrestlem 23387 2ndcctbss 23390 2ndcdisj2 23392 2ndcsep 23394 dis2ndc 23395 csdfil 23829 ufilen 23865 opnreen 24767 rectbntr0 24768 ovolctb2 25440 uniiccdif 25526 dyadmbl 25548 opnmblALT 25551 vitali 25561 mbfimaopnlem 25603 mbfsup 25612 fta1blem 26123 aannenlem3 26285 ppiwordi 27119 musum 27148 ppiub 27162 chpub 27178 dirith2 27486 upgrex 29091 rabfodom 32506 abrexdomjm 32508 mptctf 32723 locfinreflem 33925 esumcst 34148 omsmeas 34408 sibfof 34425 subfaclefac 35292 erdszelem10 35316 snmlff 35445 finminlem 36434 iccioo01 37444 isinf2 37522 pibt2 37534 phpreu 37717 lindsdom 37727 poimirlem26 37759 mblfinlem1 37770 abrexdom 37843 heiborlem3 37926 ctbnfien 42975 pellexlem4 42989 pellexlem5 42990 ttac 43193 idomodle 43348 idomsubgmo 43350 iscard5 43693 modelaxreplem1 45135 uzct 45224 rn1st 45433 smfaddlem2 46924 smfmullem4 46954 smfpimbor1lem1 46958 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |