| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5278 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 3 | f1oi 6838 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 4 | dff1o3 6806 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
| 6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
| 7 | fof 6772 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 9 | fss 6704 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
| 10 | 8, 9 | mpan 690 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
| 11 | funi 6548 | . . . . . . 7 ⊢ Fun I | |
| 12 | cnvi 6114 | . . . . . . . 8 ⊢ ◡ I = I | |
| 13 | 12 | funeqi 6537 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
| 15 | funres11 6593 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
| 17 | df-f1 6516 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
| 18 | 10, 16, 17 | sylanblrc 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 20 | f1dom2g 8941 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
| 22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 I cid 5532 ◡ccnv 5637 ↾ cres 5640 Fun wfun 6505 ⟶wf 6507 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-dom 8920 |
| This theorem is referenced by: cnvct 9005 xpdom3 9039 domunsncan 9041 domtriord 9087 sdomel 9088 sdomdif 9089 onsdominel 9090 pwdom 9093 2pwuninel 9096 mapdom1 9106 mapdom3 9113 limenpsi 9116 unbnn 9243 nnsdomgOLD 9247 fodomfiOLD 9281 fidomdm 9285 hartogslem1 9495 hartogs 9497 card2on 9507 wdompwdom 9531 wdom2d 9533 wdomima2g 9539 unxpwdom2 9541 unxpwdom 9542 harwdom 9544 r1sdom 9727 tskwe 9903 carddomi2 9923 cardsdomelir 9926 cardsdomel 9927 harcard 9931 carduni 9934 cardmin2 9952 infxpenlem 9966 ssnum 9992 acnnum 10005 fodomfi2 10013 inffien 10016 alephordi 10027 dfac12lem2 10098 djudoml 10138 cdainflem 10141 djuinf 10142 unctb 10157 infunabs 10159 infdju 10160 infdif 10161 infdif2 10162 infmap2 10170 ackbij2 10195 fictb 10197 cfslb 10219 fincssdom 10276 fin67 10348 fin1a2lem12 10364 axcclem 10410 dmct 10477 brdom3 10481 brdom5 10482 brdom4 10483 imadomg 10487 fnct 10490 mptct 10491 ondomon 10516 alephval2 10525 alephadd 10530 alephmul 10531 alephexp1 10532 alephsuc3 10533 alephexp2 10534 alephreg 10535 pwcfsdom 10536 cfpwsdom 10537 canthnum 10602 pwfseqlem5 10616 pwxpndom2 10618 pwdjundom 10620 gchaleph 10624 gchaleph2 10625 gchac 10634 winainflem 10646 gchina 10652 tsksdom 10709 tskinf 10722 inttsk 10727 inar1 10728 inatsk 10731 tskord 10733 tskcard 10734 grudomon 10770 gruina 10771 axgroth2 10778 axgroth6 10781 grothac 10783 hashun2 14348 hashss 14374 hashsslei 14391 isercoll 15634 o1fsum 15779 incexc2 15804 znnen 16180 qnnen 16181 rpnnen 16195 ruc 16211 phicl2 16738 phibnd 16741 4sqlem11 16926 vdwlem11 16962 0ram 16991 mreexdomd 17610 pgpssslw 19544 fislw 19555 cctop 22893 1stcfb 23332 2ndc1stc 23338 1stcrestlem 23339 2ndcctbss 23342 2ndcdisj2 23344 2ndcsep 23346 dis2ndc 23347 csdfil 23781 ufilen 23817 opnreen 24720 rectbntr0 24721 ovolctb2 25393 uniiccdif 25479 dyadmbl 25501 opnmblALT 25504 vitali 25514 mbfimaopnlem 25556 mbfsup 25565 fta1blem 26076 aannenlem3 26238 ppiwordi 27072 musum 27101 ppiub 27115 chpub 27131 dirith2 27439 upgrex 29019 rabfodom 32434 abrexdomjm 32436 mptctf 32641 locfinreflem 33830 esumcst 34053 omsmeas 34314 sibfof 34331 subfaclefac 35163 erdszelem10 35187 snmlff 35316 finminlem 36306 iccioo01 37315 isinf2 37393 pibt2 37405 phpreu 37598 lindsdom 37608 poimirlem26 37640 mblfinlem1 37651 abrexdom 37724 heiborlem3 37807 ctbnfien 42806 pellexlem4 42820 pellexlem5 42821 ttac 43025 idomodle 43180 idomsubgmo 43182 iscard5 43525 modelaxreplem1 44968 uzct 45057 rn1st 45267 smfaddlem2 46762 smfmullem4 46792 smfpimbor1lem1 46796 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |