| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5273 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 3 | f1oi 6820 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 4 | dff1o3 6788 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
| 6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
| 7 | fof 6754 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 9 | fss 6686 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
| 10 | 8, 9 | mpan 690 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
| 11 | funi 6532 | . . . . . . 7 ⊢ Fun I | |
| 12 | cnvi 6102 | . . . . . . . 8 ⊢ ◡ I = I | |
| 13 | 12 | funeqi 6521 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
| 15 | funres11 6577 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
| 17 | df-f1 6504 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
| 18 | 10, 16, 17 | sylanblrc 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 20 | f1dom2g 8918 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
| 22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 I cid 5525 ◡ccnv 5630 ↾ cres 5633 Fun wfun 6493 ⟶wf 6495 –1-1→wf1 6496 –onto→wfo 6497 –1-1-onto→wf1o 6498 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-dom 8897 |
| This theorem is referenced by: cnvct 8982 xpdom3 9016 domunsncan 9018 domtriord 9064 sdomel 9065 sdomdif 9066 onsdominel 9067 pwdom 9070 2pwuninel 9073 mapdom1 9083 mapdom3 9090 limenpsi 9093 unbnn 9219 nnsdomgOLD 9223 fodomfiOLD 9257 fidomdm 9261 hartogslem1 9471 hartogs 9473 card2on 9483 wdompwdom 9507 wdom2d 9509 wdomima2g 9515 unxpwdom2 9517 unxpwdom 9518 harwdom 9520 r1sdom 9703 tskwe 9879 carddomi2 9899 cardsdomelir 9902 cardsdomel 9903 harcard 9907 carduni 9910 cardmin2 9928 infxpenlem 9942 ssnum 9968 acnnum 9981 fodomfi2 9989 inffien 9992 alephordi 10003 dfac12lem2 10074 djudoml 10114 cdainflem 10117 djuinf 10118 unctb 10133 infunabs 10135 infdju 10136 infdif 10137 infdif2 10138 infmap2 10146 ackbij2 10171 fictb 10173 cfslb 10195 fincssdom 10252 fin67 10324 fin1a2lem12 10340 axcclem 10386 dmct 10453 brdom3 10457 brdom5 10458 brdom4 10459 imadomg 10463 fnct 10466 mptct 10467 ondomon 10492 alephval2 10501 alephadd 10506 alephmul 10507 alephexp1 10508 alephsuc3 10509 alephexp2 10510 alephreg 10511 pwcfsdom 10512 cfpwsdom 10513 canthnum 10578 pwfseqlem5 10592 pwxpndom2 10594 pwdjundom 10596 gchaleph 10600 gchaleph2 10601 gchac 10610 winainflem 10622 gchina 10628 tsksdom 10685 tskinf 10698 inttsk 10703 inar1 10704 inatsk 10707 tskord 10709 tskcard 10710 grudomon 10746 gruina 10747 axgroth2 10754 axgroth6 10757 grothac 10759 hashun2 14324 hashss 14350 hashsslei 14367 isercoll 15610 o1fsum 15755 incexc2 15780 znnen 16156 qnnen 16157 rpnnen 16171 ruc 16187 phicl2 16714 phibnd 16717 4sqlem11 16902 vdwlem11 16938 0ram 16967 mreexdomd 17586 pgpssslw 19520 fislw 19531 cctop 22869 1stcfb 23308 2ndc1stc 23314 1stcrestlem 23315 2ndcctbss 23318 2ndcdisj2 23320 2ndcsep 23322 dis2ndc 23323 csdfil 23757 ufilen 23793 opnreen 24696 rectbntr0 24697 ovolctb2 25369 uniiccdif 25455 dyadmbl 25477 opnmblALT 25480 vitali 25490 mbfimaopnlem 25532 mbfsup 25541 fta1blem 26052 aannenlem3 26214 ppiwordi 27048 musum 27077 ppiub 27091 chpub 27107 dirith2 27415 upgrex 28995 rabfodom 32407 abrexdomjm 32409 mptctf 32614 locfinreflem 33803 esumcst 34026 omsmeas 34287 sibfof 34304 subfaclefac 35136 erdszelem10 35160 snmlff 35289 finminlem 36279 iccioo01 37288 isinf2 37366 pibt2 37378 phpreu 37571 lindsdom 37581 poimirlem26 37613 mblfinlem1 37624 abrexdom 37697 heiborlem3 37780 ctbnfien 42779 pellexlem4 42793 pellexlem5 42794 ttac 42998 idomodle 43153 idomsubgmo 43155 iscard5 43498 modelaxreplem1 44941 uzct 45030 rn1st 45240 smfaddlem2 46735 smfmullem4 46765 smfpimbor1lem1 46769 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |