| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomg | Structured version Visualization version GIF version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5256 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 3 | f1oi 6796 | . . . . . . . . 9 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 4 | dff1o3 6764 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
| 6 | 5 | simpli 483 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
| 7 | fof 6730 | . . . . . . 7 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 9 | fss 6662 | . . . . . 6 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
| 10 | 8, 9 | mpan 690 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
| 11 | funi 6508 | . . . . . . 7 ⊢ Fun I | |
| 12 | cnvi 6083 | . . . . . . . 8 ⊢ ◡ I = I | |
| 13 | 12 | funeqi 6497 | . . . . . . 7 ⊢ (Fun ◡ I ↔ Fun I ) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ Fun ◡ I |
| 15 | funres11 6553 | . . . . . 6 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun ◡( I ↾ 𝐴) |
| 17 | df-f1 6481 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
| 18 | 10, 16, 17 | sylanblrc 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 20 | f1dom2g 8887 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
| 22 | 21 | expcom 413 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 I cid 5505 ◡ccnv 5610 ↾ cres 5613 Fun wfun 6470 ⟶wf 6472 –1-1→wf1 6473 –onto→wfo 6474 –1-1-onto→wf1o 6475 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-dom 8866 |
| This theorem is referenced by: cnvct 8951 xpdom3 8983 domunsncan 8985 domtriord 9031 sdomel 9032 sdomdif 9033 onsdominel 9034 pwdom 9037 2pwuninel 9040 mapdom1 9050 mapdom3 9057 limenpsi 9060 unbnn 9175 fodomfiOLD 9209 fidomdm 9213 hartogslem1 9423 hartogs 9425 card2on 9435 wdompwdom 9459 wdom2d 9461 wdomima2g 9467 unxpwdom2 9469 unxpwdom 9470 harwdom 9472 r1sdom 9662 tskwe 9838 carddomi2 9858 cardsdomelir 9861 cardsdomel 9862 harcard 9866 carduni 9869 cardmin2 9887 infxpenlem 9899 ssnum 9925 acnnum 9938 fodomfi2 9946 inffien 9949 alephordi 9960 dfac12lem2 10031 djudoml 10071 cdainflem 10074 djuinf 10075 unctb 10090 infunabs 10092 infdju 10093 infdif 10094 infdif2 10095 infmap2 10103 ackbij2 10128 fictb 10130 cfslb 10152 fincssdom 10209 fin67 10281 fin1a2lem12 10297 axcclem 10343 dmct 10410 brdom3 10414 brdom5 10415 brdom4 10416 imadomg 10420 fnct 10423 mptct 10424 ondomon 10449 alephval2 10458 alephadd 10463 alephmul 10464 alephexp1 10465 alephsuc3 10466 alephexp2 10467 alephreg 10468 pwcfsdom 10469 cfpwsdom 10470 canthnum 10535 pwfseqlem5 10549 pwxpndom2 10551 pwdjundom 10553 gchaleph 10557 gchaleph2 10558 gchac 10567 winainflem 10579 gchina 10585 tsksdom 10642 tskinf 10655 inttsk 10660 inar1 10661 inatsk 10664 tskord 10666 tskcard 10667 grudomon 10703 gruina 10704 axgroth2 10711 axgroth6 10714 grothac 10716 hashun2 14285 hashss 14311 hashsslei 14328 isercoll 15570 o1fsum 15715 incexc2 15740 znnen 16116 qnnen 16117 rpnnen 16131 ruc 16147 phicl2 16674 phibnd 16677 4sqlem11 16862 vdwlem11 16898 0ram 16927 mreexdomd 17550 pgpssslw 19521 fislw 19532 cctop 22916 1stcfb 23355 2ndc1stc 23361 1stcrestlem 23362 2ndcctbss 23365 2ndcdisj2 23367 2ndcsep 23369 dis2ndc 23370 csdfil 23804 ufilen 23840 opnreen 24742 rectbntr0 24743 ovolctb2 25415 uniiccdif 25501 dyadmbl 25523 opnmblALT 25526 vitali 25536 mbfimaopnlem 25578 mbfsup 25587 fta1blem 26098 aannenlem3 26260 ppiwordi 27094 musum 27123 ppiub 27137 chpub 27153 dirith2 27461 upgrex 29065 rabfodom 32477 abrexdomjm 32479 mptctf 32691 locfinreflem 33845 esumcst 34068 omsmeas 34328 sibfof 34345 subfaclefac 35212 erdszelem10 35236 snmlff 35365 finminlem 36352 iccioo01 37361 isinf2 37439 pibt2 37451 phpreu 37644 lindsdom 37654 poimirlem26 37686 mblfinlem1 37697 abrexdom 37770 heiborlem3 37853 ctbnfien 42851 pellexlem4 42865 pellexlem5 42866 ttac 43069 idomodle 43224 idomsubgmo 43226 iscard5 43569 modelaxreplem1 45011 uzct 45100 rn1st 45310 smfaddlem2 46802 smfmullem4 46832 smfpimbor1lem1 46836 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |