Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpexb Structured version   Visualization version   GIF version

Theorem xpexb 42025
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexb ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)

Proof of Theorem xpexb
StepHypRef Expression
1 cnvxp 6057 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
2 cnvexg 7758 . . 3 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ V)
31, 2eqeltrrid 2845 . 2 ((𝐴 × 𝐵) ∈ V → (𝐵 × 𝐴) ∈ V)
4 cnvxp 6057 . . 3 (𝐵 × 𝐴) = (𝐴 × 𝐵)
5 cnvexg 7758 . . 3 ((𝐵 × 𝐴) ∈ V → (𝐵 × 𝐴) ∈ V)
64, 5eqeltrrid 2845 . 2 ((𝐵 × 𝐴) ∈ V → (𝐴 × 𝐵) ∈ V)
73, 6impbii 208 1 ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2109  Vcvv 3430   × cxp 5586  ccnv 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator