![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpexb | Structured version Visualization version GIF version |
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
Ref | Expression |
---|---|
xpexb | ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvxp 6156 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
2 | cnvexg 7914 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → ◡(𝐴 × 𝐵) ∈ V) | |
3 | 1, 2 | eqeltrrid 2838 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐵 × 𝐴) ∈ V) |
4 | cnvxp 6156 | . . 3 ⊢ ◡(𝐵 × 𝐴) = (𝐴 × 𝐵) | |
5 | cnvexg 7914 | . . 3 ⊢ ((𝐵 × 𝐴) ∈ V → ◡(𝐵 × 𝐴) ∈ V) | |
6 | 4, 5 | eqeltrrid 2838 | . 2 ⊢ ((𝐵 × 𝐴) ∈ V → (𝐴 × 𝐵) ∈ V) |
7 | 3, 6 | impbii 208 | 1 ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3474 × cxp 5674 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |