Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpexb | Structured version Visualization version GIF version |
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
Ref | Expression |
---|---|
xpexb | ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvxp 6057 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
2 | cnvexg 7758 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → ◡(𝐴 × 𝐵) ∈ V) | |
3 | 1, 2 | eqeltrrid 2845 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐵 × 𝐴) ∈ V) |
4 | cnvxp 6057 | . . 3 ⊢ ◡(𝐵 × 𝐴) = (𝐴 × 𝐵) | |
5 | cnvexg 7758 | . . 3 ⊢ ((𝐵 × 𝐴) ∈ V → ◡(𝐵 × 𝐴) ∈ V) | |
6 | 4, 5 | eqeltrrid 2845 | . 2 ⊢ ((𝐵 × 𝐴) ∈ V → (𝐴 × 𝐵) ∈ V) |
7 | 3, 6 | impbii 208 | 1 ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2109 Vcvv 3430 × cxp 5586 ◡ccnv 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |