Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpexb Structured version   Visualization version   GIF version

Theorem xpexb 44450
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexb ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)

Proof of Theorem xpexb
StepHypRef Expression
1 cnvxp 6133 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
2 cnvexg 7903 . . 3 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ V)
31, 2eqeltrrid 2834 . 2 ((𝐴 × 𝐵) ∈ V → (𝐵 × 𝐴) ∈ V)
4 cnvxp 6133 . . 3 (𝐵 × 𝐴) = (𝐴 × 𝐵)
5 cnvexg 7903 . . 3 ((𝐵 × 𝐴) ∈ V → (𝐵 × 𝐴) ∈ V)
64, 5eqeltrrid 2834 . 2 ((𝐵 × 𝐴) ∈ V → (𝐴 × 𝐵) ∈ V)
73, 6impbii 209 1 ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3450   × cxp 5639  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator