| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpexb | Structured version Visualization version GIF version | ||
| Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| Ref | Expression |
|---|---|
| xpexb | ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvxp 6112 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 2 | cnvexg 7863 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → ◡(𝐴 × 𝐵) ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2838 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐵 × 𝐴) ∈ V) |
| 4 | cnvxp 6112 | . . 3 ⊢ ◡(𝐵 × 𝐴) = (𝐴 × 𝐵) | |
| 5 | cnvexg 7863 | . . 3 ⊢ ((𝐵 × 𝐴) ∈ V → ◡(𝐵 × 𝐴) ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2838 | . 2 ⊢ ((𝐵 × 𝐴) ∈ V → (𝐴 × 𝐵) ∈ V) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 × cxp 5619 ◡ccnv 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |