Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpexb Structured version   Visualization version   GIF version

Theorem xpexb 43814
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexb ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)

Proof of Theorem xpexb
StepHypRef Expression
1 cnvxp 6155 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
2 cnvexg 7926 . . 3 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ V)
31, 2eqeltrrid 2833 . 2 ((𝐴 × 𝐵) ∈ V → (𝐵 × 𝐴) ∈ V)
4 cnvxp 6155 . . 3 (𝐵 × 𝐴) = (𝐴 × 𝐵)
5 cnvexg 7926 . . 3 ((𝐵 × 𝐴) ∈ V → (𝐵 × 𝐴) ∈ V)
64, 5eqeltrrid 2833 . 2 ((𝐵 × 𝐴) ∈ V → (𝐴 × 𝐵) ∈ V)
73, 6impbii 208 1 ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2099  Vcvv 3469   × cxp 5670  ccnv 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator