Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpexb Structured version   Visualization version   GIF version

Theorem xpexb 44610
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexb ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)

Proof of Theorem xpexb
StepHypRef Expression
1 cnvxp 6112 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
2 cnvexg 7863 . . 3 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ V)
31, 2eqeltrrid 2838 . 2 ((𝐴 × 𝐵) ∈ V → (𝐵 × 𝐴) ∈ V)
4 cnvxp 6112 . . 3 (𝐵 × 𝐴) = (𝐴 × 𝐵)
5 cnvexg 7863 . . 3 ((𝐵 × 𝐴) ∈ V → (𝐵 × 𝐴) ∈ V)
64, 5eqeltrrid 2838 . 2 ((𝐵 × 𝐴) ∈ V → (𝐴 × 𝐵) ∈ V)
73, 6impbii 209 1 ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  Vcvv 3437   × cxp 5619  ccnv 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator