| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqvfvv | Structured version Visualization version GIF version | ||
| Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6871), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| fveqvfvv | ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | eleq1a 2823 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ V → (V = (𝐹‘𝐴) → V ∈ V)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (V = (𝐹‘𝐴) → V ∈ V) |
| 4 | vprc 5270 | . . . 4 ⊢ ¬ V ∈ V | |
| 5 | 4 | pm2.21i 119 | . . 3 ⊢ (V ∈ V → (𝐹‘𝐴) = 𝐵) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = 𝐵) |
| 7 | 6 | eqcoms 2737 | 1 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: afvpcfv0 47147 |
| Copyright terms: Public domain | W3C validator |