Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqvfvv | Structured version Visualization version GIF version |
Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6730), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
fveqvfvv | ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6730 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
2 | eleq1a 2833 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ V → (V = (𝐹‘𝐴) → V ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (V = (𝐹‘𝐴) → V ∈ V) |
4 | vprc 5208 | . . . 4 ⊢ ¬ V ∈ V | |
5 | 4 | pm2.21i 119 | . . 3 ⊢ (V ∈ V → (𝐹‘𝐴) = 𝐵) |
6 | 3, 5 | syl 17 | . 2 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = 𝐵) |
7 | 6 | eqcoms 2745 | 1 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-sn 4542 df-pr 4544 df-uni 4820 df-iota 6338 df-fv 6388 |
This theorem is referenced by: afvpcfv0 44310 |
Copyright terms: Public domain | W3C validator |