![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqvfvv | Structured version Visualization version GIF version |
Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6903), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
fveqvfvv | ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6903 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
2 | eleq1a 2826 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ V → (V = (𝐹‘𝐴) → V ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (V = (𝐹‘𝐴) → V ∈ V) |
4 | vprc 5314 | . . . 4 ⊢ ¬ V ∈ V | |
5 | 4 | pm2.21i 119 | . . 3 ⊢ (V ∈ V → (𝐹‘𝐴) = 𝐵) |
6 | 3, 5 | syl 17 | . 2 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = 𝐵) |
7 | 6 | eqcoms 2738 | 1 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 df-uni 4908 df-iota 6494 df-fv 6550 |
This theorem is referenced by: afvpcfv0 46152 |
Copyright terms: Public domain | W3C validator |