Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqvfvv Structured version   Visualization version   GIF version

Theorem fveqvfvv 47069
Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6889), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
fveqvfvv ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)

Proof of Theorem fveqvfvv
StepHypRef Expression
1 fvex 6889 . . . 4 (𝐹𝐴) ∈ V
2 eleq1a 2829 . . . 4 ((𝐹𝐴) ∈ V → (V = (𝐹𝐴) → V ∈ V))
31, 2ax-mp 5 . . 3 (V = (𝐹𝐴) → V ∈ V)
4 vprc 5285 . . . 4 ¬ V ∈ V
54pm2.21i 119 . . 3 (V ∈ V → (𝐹𝐴) = 𝐵)
63, 5syl 17 . 2 (V = (𝐹𝐴) → (𝐹𝐴) = 𝐵)
76eqcoms 2743 1 ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-sn 4602  df-pr 4604  df-uni 4884  df-iota 6484  df-fv 6539
This theorem is referenced by:  afvpcfv0  47175
  Copyright terms: Public domain W3C validator