Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqvfvv Structured version   Visualization version   GIF version

Theorem fveqvfvv 44421
Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6769), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
fveqvfvv ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)

Proof of Theorem fveqvfvv
StepHypRef Expression
1 fvex 6769 . . . 4 (𝐹𝐴) ∈ V
2 eleq1a 2834 . . . 4 ((𝐹𝐴) ∈ V → (V = (𝐹𝐴) → V ∈ V))
31, 2ax-mp 5 . . 3 (V = (𝐹𝐴) → V ∈ V)
4 vprc 5234 . . . 4 ¬ V ∈ V
54pm2.21i 119 . . 3 (V ∈ V → (𝐹𝐴) = 𝐵)
63, 5syl 17 . 2 (V = (𝐹𝐴) → (𝐹𝐴) = 𝐵)
76eqcoms 2746 1 ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-fv 6426
This theorem is referenced by:  afvpcfv0  44525
  Copyright terms: Public domain W3C validator