| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqvfvv | Structured version Visualization version GIF version | ||
| Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6899), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| fveqvfvv | ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6899 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | eleq1a 2828 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ V → (V = (𝐹‘𝐴) → V ∈ V)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (V = (𝐹‘𝐴) → V ∈ V) |
| 4 | vprc 5295 | . . . 4 ⊢ ¬ V ∈ V | |
| 5 | 4 | pm2.21i 119 | . . 3 ⊢ (V ∈ V → (𝐹‘𝐴) = 𝐵) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = 𝐵) |
| 7 | 6 | eqcoms 2742 | 1 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4888 df-iota 6494 df-fv 6549 |
| This theorem is referenced by: afvpcfv0 47131 |
| Copyright terms: Public domain | W3C validator |