![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqvfvv | Structured version Visualization version GIF version |
Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6933), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
fveqvfvv | ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
2 | eleq1a 2839 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ V → (V = (𝐹‘𝐴) → V ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (V = (𝐹‘𝐴) → V ∈ V) |
4 | vprc 5333 | . . . 4 ⊢ ¬ V ∈ V | |
5 | 4 | pm2.21i 119 | . . 3 ⊢ (V ∈ V → (𝐹‘𝐴) = 𝐵) |
6 | 3, 5 | syl 17 | . 2 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = 𝐵) |
7 | 6 | eqcoms 2748 | 1 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-fv 6581 |
This theorem is referenced by: afvpcfv0 47061 |
Copyright terms: Public domain | W3C validator |