Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqvfvv Structured version   Visualization version   GIF version

Theorem fveqvfvv 47041
Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6871), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
fveqvfvv ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)

Proof of Theorem fveqvfvv
StepHypRef Expression
1 fvex 6871 . . . 4 (𝐹𝐴) ∈ V
2 eleq1a 2823 . . . 4 ((𝐹𝐴) ∈ V → (V = (𝐹𝐴) → V ∈ V))
31, 2ax-mp 5 . . 3 (V = (𝐹𝐴) → V ∈ V)
4 vprc 5270 . . . 4 ¬ V ∈ V
54pm2.21i 119 . . 3 (V ∈ V → (𝐹𝐴) = 𝐵)
63, 5syl 17 . 2 (V = (𝐹𝐴) → (𝐹𝐴) = 𝐵)
76eqcoms 2737 1 ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-sn 4590  df-pr 4592  df-uni 4872  df-iota 6464  df-fv 6519
This theorem is referenced by:  afvpcfv0  47147
  Copyright terms: Public domain W3C validator