Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresfnco Structured version   Visualization version   GIF version

Theorem fnresfnco 46991
Description: Composition of two functions, similar to fnco 6687. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
fnresfnco (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnresfnco
StepHypRef Expression
1 fnfun 6669 . . 3 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → Fun (𝐹 ↾ ran 𝐺))
2 fnfun 6669 . . 3 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funresfunco 6609 . . 3 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 596 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → Fun (𝐹𝐺))
5 fndm 6672 . . . . . 6 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → dom (𝐹 ↾ ran 𝐺) = ran 𝐺)
6 dmres 6032 . . . . . . . 8 dom (𝐹 ↾ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹)
76eqeq1i 2740 . . . . . . 7 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
8 dfss2 3981 . . . . . . 7 (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
97, 8sylbb2 238 . . . . . 6 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
105, 9syl 17 . . . . 5 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
1110adantr 480 . . . 4 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → ran 𝐺 ⊆ dom 𝐹)
12 dmcosseq 5990 . . . 4 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
1311, 12syl 17 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = dom 𝐺)
14 fndm 6672 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
1514adantl 481 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom 𝐺 = 𝐵)
1613, 15eqtrd 2775 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = 𝐵)
17 df-fn 6566 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
184, 16, 17sylanbrc 583 1 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  cin 3962  wss 3963  dom cdm 5689  ran crn 5690  cres 5691  ccom 5693  Fun wfun 6557   Fn wfn 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-fun 6565  df-fn 6566
This theorem is referenced by:  funcoressn  46992
  Copyright terms: Public domain W3C validator