Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresfnco Structured version   Visualization version   GIF version

Theorem fnresfnco 45737
Description: Composition of two functions, similar to fnco 6664. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
fnresfnco (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnresfnco
StepHypRef Expression
1 fnfun 6646 . . 3 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → Fun (𝐹 ↾ ran 𝐺))
2 fnfun 6646 . . 3 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funresfunco 6586 . . 3 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 596 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → Fun (𝐹𝐺))
5 fndm 6649 . . . . . 6 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → dom (𝐹 ↾ ran 𝐺) = ran 𝐺)
6 dmres 6001 . . . . . . . 8 dom (𝐹 ↾ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹)
76eqeq1i 2737 . . . . . . 7 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
8 df-ss 3964 . . . . . . 7 (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
97, 8sylbb2 237 . . . . . 6 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
105, 9syl 17 . . . . 5 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
1110adantr 481 . . . 4 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → ran 𝐺 ⊆ dom 𝐹)
12 dmcosseq 5970 . . . 4 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
1311, 12syl 17 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = dom 𝐺)
14 fndm 6649 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
1514adantl 482 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom 𝐺 = 𝐵)
1613, 15eqtrd 2772 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = 𝐵)
17 df-fn 6543 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
184, 16, 17sylanbrc 583 1 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  cin 3946  wss 3947  dom cdm 5675  ran crn 5676  cres 5677  ccom 5679  Fun wfun 6534   Fn wfn 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-fun 6542  df-fn 6543
This theorem is referenced by:  funcoressn  45738
  Copyright terms: Public domain W3C validator