Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresfnco | Structured version Visualization version GIF version |
Description: Composition of two functions, similar to fnco 6549. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
Ref | Expression |
---|---|
fnresfnco | ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6533 | . . 3 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → Fun (𝐹 ↾ ran 𝐺)) | |
2 | fnfun 6533 | . . 3 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
3 | funresfunco 6475 | . . 3 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
5 | fndm 6536 | . . . . . 6 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → dom (𝐹 ↾ ran 𝐺) = ran 𝐺) | |
6 | dmres 5913 | . . . . . . . 8 ⊢ dom (𝐹 ↾ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹) | |
7 | 6 | eqeq1i 2743 | . . . . . . 7 ⊢ (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) |
8 | df-ss 3904 | . . . . . . 7 ⊢ (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) | |
9 | 7, 8 | sylbb2 237 | . . . . . 6 ⊢ (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 → ran 𝐺 ⊆ dom 𝐹) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → ran 𝐺 ⊆ dom 𝐹) |
11 | 10 | adantr 481 | . . . 4 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → ran 𝐺 ⊆ dom 𝐹) |
12 | dmcosseq 5882 | . . . 4 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
14 | fndm 6536 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
15 | 14 | adantl 482 | . . 3 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom 𝐺 = 𝐵) |
16 | 13, 15 | eqtrd 2778 | . 2 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom (𝐹 ∘ 𝐺) = 𝐵) |
17 | df-fn 6436 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
18 | 4, 16, 17 | sylanbrc 583 | 1 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 dom cdm 5589 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 Fun wfun 6427 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 df-fn 6436 |
This theorem is referenced by: funcoressn 44536 |
Copyright terms: Public domain | W3C validator |