![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresfnco | Structured version Visualization version GIF version |
Description: Composition of two functions, similar to fnco 6619. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
Ref | Expression |
---|---|
fnresfnco | ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6603 | . . 3 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → Fun (𝐹 ↾ ran 𝐺)) | |
2 | fnfun 6603 | . . 3 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
3 | funresfunco 6543 | . . 3 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2an 597 | . 2 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
5 | fndm 6606 | . . . . . 6 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → dom (𝐹 ↾ ran 𝐺) = ran 𝐺) | |
6 | dmres 5960 | . . . . . . . 8 ⊢ dom (𝐹 ↾ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹) | |
7 | 6 | eqeq1i 2742 | . . . . . . 7 ⊢ (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) |
8 | df-ss 3928 | . . . . . . 7 ⊢ (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) | |
9 | 7, 8 | sylbb2 237 | . . . . . 6 ⊢ (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 → ran 𝐺 ⊆ dom 𝐹) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → ran 𝐺 ⊆ dom 𝐹) |
11 | 10 | adantr 482 | . . . 4 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → ran 𝐺 ⊆ dom 𝐹) |
12 | dmcosseq 5929 | . . . 4 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
14 | fndm 6606 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
15 | 14 | adantl 483 | . . 3 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom 𝐺 = 𝐵) |
16 | 13, 15 | eqtrd 2777 | . 2 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom (𝐹 ∘ 𝐺) = 𝐵) |
17 | df-fn 6500 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
18 | 4, 16, 17 | sylanbrc 584 | 1 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∩ cin 3910 ⊆ wss 3911 dom cdm 5634 ran crn 5635 ↾ cres 5636 ∘ ccom 5638 Fun wfun 6491 Fn wfn 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-fun 6499 df-fn 6500 |
This theorem is referenced by: funcoressn 45283 |
Copyright terms: Public domain | W3C validator |