Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresfnco | Structured version Visualization version GIF version |
Description: Composition of two functions, similar to fnco 6494. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
Ref | Expression |
---|---|
fnresfnco | ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6479 | . . 3 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → Fun (𝐹 ↾ ran 𝐺)) | |
2 | fnfun 6479 | . . 3 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
3 | funresfunco 6421 | . . 3 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2an 599 | . 2 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
5 | fndm 6481 | . . . . . 6 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → dom (𝐹 ↾ ran 𝐺) = ran 𝐺) | |
6 | dmres 5873 | . . . . . . . 8 ⊢ dom (𝐹 ↾ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹) | |
7 | 6 | eqeq1i 2742 | . . . . . . 7 ⊢ (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) |
8 | df-ss 3883 | . . . . . . 7 ⊢ (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) | |
9 | 7, 8 | sylbb2 241 | . . . . . 6 ⊢ (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 → ran 𝐺 ⊆ dom 𝐹) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → ran 𝐺 ⊆ dom 𝐹) |
11 | 10 | adantr 484 | . . . 4 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → ran 𝐺 ⊆ dom 𝐹) |
12 | dmcosseq 5842 | . . . 4 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
14 | fndm 6481 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
15 | 14 | adantl 485 | . . 3 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom 𝐺 = 𝐵) |
16 | 13, 15 | eqtrd 2777 | . 2 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → dom (𝐹 ∘ 𝐺) = 𝐵) |
17 | df-fn 6383 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
18 | 4, 16, 17 | sylanbrc 586 | 1 ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∩ cin 3865 ⊆ wss 3866 dom cdm 5551 ran crn 5552 ↾ cres 5553 ∘ ccom 5555 Fun wfun 6374 Fn wfn 6375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-fun 6382 df-fn 6383 |
This theorem is referenced by: funcoressn 44208 |
Copyright terms: Public domain | W3C validator |