Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresfnco Structured version   Visualization version   GIF version

Theorem fnresfnco 44535
Description: Composition of two functions, similar to fnco 6549. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
fnresfnco (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnresfnco
StepHypRef Expression
1 fnfun 6533 . . 3 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → Fun (𝐹 ↾ ran 𝐺))
2 fnfun 6533 . . 3 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funresfunco 6475 . . 3 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 596 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → Fun (𝐹𝐺))
5 fndm 6536 . . . . . 6 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → dom (𝐹 ↾ ran 𝐺) = ran 𝐺)
6 dmres 5913 . . . . . . . 8 dom (𝐹 ↾ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹)
76eqeq1i 2743 . . . . . . 7 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
8 df-ss 3904 . . . . . . 7 (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
97, 8sylbb2 237 . . . . . 6 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
105, 9syl 17 . . . . 5 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
1110adantr 481 . . . 4 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → ran 𝐺 ⊆ dom 𝐹)
12 dmcosseq 5882 . . . 4 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
1311, 12syl 17 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = dom 𝐺)
14 fndm 6536 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
1514adantl 482 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom 𝐺 = 𝐵)
1613, 15eqtrd 2778 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = 𝐵)
17 df-fn 6436 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
184, 16, 17sylanbrc 583 1 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  cin 3886  wss 3887  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  Fun wfun 6427   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-fun 6435  df-fn 6436
This theorem is referenced by:  funcoressn  44536
  Copyright terms: Public domain W3C validator