Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresfnco Structured version   Visualization version   GIF version

Theorem fnresfnco 42711
Description: Composition of two functions, similar to fnco 6296. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
fnresfnco (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnresfnco
StepHypRef Expression
1 fnfun 6284 . . 3 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → Fun (𝐹 ↾ ran 𝐺))
2 fnfun 6284 . . 3 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funresfunco 6227 . . 3 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 587 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → Fun (𝐹𝐺))
5 fndm 6286 . . . . . 6 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → dom (𝐹 ↾ ran 𝐺) = ran 𝐺)
6 dmres 5718 . . . . . . . 8 dom (𝐹 ↾ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹)
76eqeq1i 2778 . . . . . . 7 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
8 df-ss 3838 . . . . . . 7 (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
97, 8sylbb2 230 . . . . . 6 (dom (𝐹 ↾ ran 𝐺) = ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
105, 9syl 17 . . . . 5 ((𝐹 ↾ ran 𝐺) Fn ran 𝐺 → ran 𝐺 ⊆ dom 𝐹)
1110adantr 473 . . . 4 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → ran 𝐺 ⊆ dom 𝐹)
12 dmcosseq 5684 . . . 4 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
1311, 12syl 17 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = dom 𝐺)
14 fndm 6286 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
1514adantl 474 . . 3 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom 𝐺 = 𝐵)
1613, 15eqtrd 2809 . 2 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → dom (𝐹𝐺) = 𝐵)
17 df-fn 6189 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
184, 16, 17sylanbrc 575 1 (((𝐹 ↾ ran 𝐺) Fn ran 𝐺𝐺 Fn 𝐵) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  cin 3823  wss 3824  dom cdm 5404  ran crn 5405  cres 5406  ccom 5408  Fun wfun 6180   Fn wfn 6181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pr 5183
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-br 4927  df-opab 4989  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-fun 6188  df-fn 6189
This theorem is referenced by:  funcoressn  42712
  Copyright terms: Public domain W3C validator