MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruel Structured version   Visualization version   GIF version

Theorem gruel 10794
Description: Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruel ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)

Proof of Theorem gruel
StepHypRef Expression
1 gruelss 10785 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
21sseld 3980 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵𝐴𝐵𝑈))
323impia 1117 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106  Univcgru 10781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-tr 5265  df-iota 6492  df-fv 6548  df-ov 7408  df-gru 10782
This theorem is referenced by:  gruf  10802  grumnudlem  43029
  Copyright terms: Public domain W3C validator