Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruel | Structured version Visualization version GIF version |
Description: Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruel | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruelss 10543 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) | |
2 | 1 | sseld 3925 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑈)) |
3 | 2 | 3impia 1116 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 Univcgru 10539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-tr 5197 df-iota 6389 df-fv 6439 df-ov 7272 df-gru 10540 |
This theorem is referenced by: gruf 10560 grumnudlem 41865 |
Copyright terms: Public domain | W3C validator |