MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruel Structured version   Visualization version   GIF version

Theorem gruel 10820
Description: Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruel ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)

Proof of Theorem gruel
StepHypRef Expression
1 gruelss 10811 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
21sseld 3977 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵𝐴𝐵𝑈))
323impia 1115 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2099  Univcgru 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-tr 5260  df-iota 6494  df-fv 6550  df-ov 7417  df-gru 10808
This theorem is referenced by:  gruf  10828  grumnudlem  43716
  Copyright terms: Public domain W3C validator