| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruel | Structured version Visualization version GIF version | ||
| Description: Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruel | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gruelss 10816 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) | |
| 2 | 1 | sseld 3962 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑈)) |
| 3 | 2 | 3impia 1117 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 Univcgru 10812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-tr 5240 df-iota 6494 df-fv 6549 df-ov 7416 df-gru 10813 |
| This theorem is referenced by: gruf 10833 grumnudlem 44261 |
| Copyright terms: Public domain | W3C validator |