MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grusn Structured version   Visualization version   GIF version

Theorem grusn 10873
Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grusn ((𝑈 ∈ Univ ∧ 𝐴𝑈) → {𝐴} ∈ 𝑈)

Proof of Theorem grusn
StepHypRef Expression
1 dfsn2 4661 . 2 {𝐴} = {𝐴, 𝐴}
2 grupr 10866 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐴𝑈) → {𝐴, 𝐴} ∈ 𝑈)
323anidm23 1421 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → {𝐴, 𝐴} ∈ 𝑈)
41, 3eqeltrid 2848 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → {𝐴} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {csn 4648  {cpr 4650  Univcgru 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-tr 5284  df-iota 6525  df-fv 6581  df-ov 7451  df-gru 10860
This theorem is referenced by:  gruop  10874  grusucd  44199
  Copyright terms: Public domain W3C validator