| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grusn | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| grusn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4589 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | grupr 10685 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → {𝐴, 𝐴} ∈ 𝑈) | |
| 3 | 2 | 3anidm23 1423 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴, 𝐴} ∈ 𝑈) |
| 4 | 1, 3 | eqeltrid 2835 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 {csn 4576 {cpr 4578 Univcgru 10678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-tr 5199 df-iota 6437 df-fv 6489 df-ov 7349 df-gru 10679 |
| This theorem is referenced by: gruop 10693 grusucd 44262 |
| Copyright terms: Public domain | W3C validator |