MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruelss Structured version   Visualization version   GIF version

Theorem gruelss 10408
Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruelss ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)

Proof of Theorem gruelss
StepHypRef Expression
1 grutr 10407 . 2 (𝑈 ∈ Univ → Tr 𝑈)
2 trss 5170 . . 3 (Tr 𝑈 → (𝐴𝑈𝐴𝑈))
32imp 410 . 2 ((Tr 𝑈𝐴𝑈) → 𝐴𝑈)
41, 3sylan 583 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110  wss 3866  Tr wtr 5161  Univcgru 10404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-tr 5162  df-iota 6338  df-fv 6388  df-ov 7216  df-gru 10405
This theorem is referenced by:  gruss  10410  gruuni  10414  gruel  10417  grur1a  10433  grur1  10434
  Copyright terms: Public domain W3C validator