MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruelss Structured version   Visualization version   GIF version

Theorem gruelss 10481
Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruelss ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)

Proof of Theorem gruelss
StepHypRef Expression
1 grutr 10480 . 2 (𝑈 ∈ Univ → Tr 𝑈)
2 trss 5196 . . 3 (Tr 𝑈 → (𝐴𝑈𝐴𝑈))
32imp 406 . 2 ((Tr 𝑈𝐴𝑈) → 𝐴𝑈)
41, 3sylan 579 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3883  Tr wtr 5187  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-tr 5188  df-iota 6376  df-fv 6426  df-ov 7258  df-gru 10478
This theorem is referenced by:  gruss  10483  gruuni  10487  gruel  10490  grur1a  10506  grur1  10507
  Copyright terms: Public domain W3C validator