Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruelss | Structured version Visualization version GIF version |
Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruelss | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grutr 10480 | . 2 ⊢ (𝑈 ∈ Univ → Tr 𝑈) | |
2 | trss 5196 | . . 3 ⊢ (Tr 𝑈 → (𝐴 ∈ 𝑈 → 𝐴 ⊆ 𝑈)) | |
3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝑈 ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) |
4 | 1, 3 | sylan 579 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 Tr wtr 5187 Univcgru 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-tr 5188 df-iota 6376 df-fv 6426 df-ov 7258 df-gru 10478 |
This theorem is referenced by: gruss 10483 gruuni 10487 gruel 10490 grur1a 10506 grur1 10507 |
Copyright terms: Public domain | W3C validator |