MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruelss Structured version   Visualization version   GIF version

Theorem gruelss 10550
Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruelss ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)

Proof of Theorem gruelss
StepHypRef Expression
1 grutr 10549 . 2 (𝑈 ∈ Univ → Tr 𝑈)
2 trss 5200 . . 3 (Tr 𝑈 → (𝐴𝑈𝐴𝑈))
32imp 407 . 2 ((Tr 𝑈𝐴𝑈) → 𝐴𝑈)
41, 3sylan 580 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wss 3887  Tr wtr 5191  Univcgru 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-tr 5192  df-iota 6391  df-fv 6441  df-ov 7278  df-gru 10547
This theorem is referenced by:  gruss  10552  gruuni  10556  gruel  10559  grur1a  10575  grur1  10576
  Copyright terms: Public domain W3C validator