| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruelss | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruelss | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grutr 10722 | . 2 ⊢ (𝑈 ∈ Univ → Tr 𝑈) | |
| 2 | trss 5220 | . . 3 ⊢ (Tr 𝑈 → (𝐴 ∈ 𝑈 → 𝐴 ⊆ 𝑈)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((Tr 𝑈 ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 Tr wtr 5209 Univcgru 10719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-tr 5210 df-iota 6452 df-fv 6507 df-ov 7372 df-gru 10720 |
| This theorem is referenced by: gruss 10725 gruuni 10729 gruel 10732 grur1a 10748 grur1 10749 |
| Copyright terms: Public domain | W3C validator |