| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruf | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruf | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹:𝐴⟶𝑈) | |
| 2 | 1 | feqmptd 6911 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 3 | fvex 6853 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 4 | 3 | fnasrn 7099 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) |
| 5 | 2, 4 | eqtrdi 2780 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉)) |
| 6 | simpl1 1192 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑈 ∈ Univ) | |
| 7 | gruel 10732 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) | |
| 8 | 7 | 3expa 1118 | . . . . . 6 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
| 9 | 8 | 3adantl3 1169 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
| 10 | ffvelcdm 7035 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝑈 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) | |
| 11 | 10 | 3ad2antl3 1188 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) |
| 12 | gruop 10734 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ (𝐹‘𝑥) ∈ 𝑈) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) | |
| 13 | 6, 9, 11, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) |
| 14 | 13 | fmpttd 7069 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) |
| 15 | grurn 10730 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) | |
| 16 | 14, 15 | syld3an3 1411 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) |
| 17 | 5, 16 | eqeltrd 2828 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4591 ↦ cmpt 5183 ran crn 5632 ⟶wf 6495 ‘cfv 6499 Univcgru 10719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-gru 10720 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |