![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruf | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
gruf | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1118 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹:𝐴⟶𝑈) | |
2 | 1 | feqmptd 6564 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
3 | fvex 6514 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | fnasrn 6732 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) |
5 | 2, 4 | syl6eq 2830 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉)) |
6 | simpl1 1171 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑈 ∈ Univ) | |
7 | gruel 10025 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) | |
8 | 7 | 3expa 1098 | . . . . . 6 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
9 | 8 | 3adantl3 1148 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
10 | ffvelrn 6676 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝑈 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) | |
11 | 10 | 3ad2antl3 1167 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) |
12 | gruop 10027 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ (𝐹‘𝑥) ∈ 𝑈) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) | |
13 | 6, 9, 11, 12 | syl3anc 1351 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) |
14 | 13 | fmpttd 6704 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) |
15 | grurn 10023 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) | |
16 | 14, 15 | syld3an3 1389 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) |
17 | 5, 16 | eqeltrd 2866 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2050 〈cop 4448 ↦ cmpt 5009 ran crn 5409 ⟶wf 6186 ‘cfv 6190 Univcgru 10012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-ov 6981 df-oprab 6982 df-mpo 6983 df-map 8210 df-gru 10013 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |