MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruf Structured version   Visualization version   GIF version

Theorem gruf 10390
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
gruf ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)

Proof of Theorem gruf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1140 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹:𝐴𝑈)
21feqmptd 6758 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
3 fvex 6708 . . . 4 (𝐹𝑥) ∈ V
43fnasrn 6938 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩)
52, 4eqtrdi 2787 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩))
6 simpl1 1193 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑈 ∈ Univ)
7 gruel 10382 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝑥𝐴) → 𝑥𝑈)
873expa 1120 . . . . . 6 (((𝑈 ∈ Univ ∧ 𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
983adantl3 1170 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
10 ffvelrn 6880 . . . . . 6 ((𝐹:𝐴𝑈𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
11103ad2antl3 1189 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
12 gruop 10384 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝐹𝑥) ∈ 𝑈) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
136, 9, 11, 12syl3anc 1373 . . . 4 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
1413fmpttd 6910 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈)
15 grurn 10380 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
1614, 15syld3an3 1411 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
175, 16eqeltrd 2831 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2112  cop 4533  cmpt 5120  ran crn 5537  wf 6354  cfv 6358  Univcgru 10369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-map 8488  df-gru 10370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator