MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruf Structured version   Visualization version   GIF version

Theorem gruf 10740
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
gruf ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)

Proof of Theorem gruf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹:𝐴𝑈)
21feqmptd 6911 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
3 fvex 6853 . . . 4 (𝐹𝑥) ∈ V
43fnasrn 7099 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩)
52, 4eqtrdi 2780 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩))
6 simpl1 1192 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑈 ∈ Univ)
7 gruel 10732 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝑥𝐴) → 𝑥𝑈)
873expa 1118 . . . . . 6 (((𝑈 ∈ Univ ∧ 𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
983adantl3 1169 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
10 ffvelcdm 7035 . . . . . 6 ((𝐹:𝐴𝑈𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
11103ad2antl3 1188 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
12 gruop 10734 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝐹𝑥) ∈ 𝑈) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
136, 9, 11, 12syl3anc 1373 . . . 4 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
1413fmpttd 7069 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈)
15 grurn 10730 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
1614, 15syld3an3 1411 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
175, 16eqeltrd 2828 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  cop 4591  cmpt 5183  ran crn 5632  wf 6495  cfv 6499  Univcgru 10719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-gru 10720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator