MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruf Structured version   Visualization version   GIF version

Theorem gruf 10498
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
gruf ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)

Proof of Theorem gruf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1136 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹:𝐴𝑈)
21feqmptd 6819 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
3 fvex 6769 . . . 4 (𝐹𝑥) ∈ V
43fnasrn 6999 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩)
52, 4eqtrdi 2795 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩))
6 simpl1 1189 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑈 ∈ Univ)
7 gruel 10490 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝑥𝐴) → 𝑥𝑈)
873expa 1116 . . . . . 6 (((𝑈 ∈ Univ ∧ 𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
983adantl3 1166 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
10 ffvelrn 6941 . . . . . 6 ((𝐹:𝐴𝑈𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
11103ad2antl3 1185 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
12 gruop 10492 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝐹𝑥) ∈ 𝑈) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
136, 9, 11, 12syl3anc 1369 . . . 4 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
1413fmpttd 6971 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈)
15 grurn 10488 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
1614, 15syld3an3 1407 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
175, 16eqeltrd 2839 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  cop 4564  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-gru 10478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator