MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruf Structured version   Visualization version   GIF version

Theorem gruf 10806
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
gruf ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)

Proof of Theorem gruf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1139 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹:𝐴𝑈)
21feqmptd 6961 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
3 fvex 6905 . . . 4 (𝐹𝑥) ∈ V
43fnasrn 7143 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩)
52, 4eqtrdi 2789 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹 = ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩))
6 simpl1 1192 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑈 ∈ Univ)
7 gruel 10798 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝑥𝐴) → 𝑥𝑈)
873expa 1119 . . . . . 6 (((𝑈 ∈ Univ ∧ 𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
983adantl3 1169 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → 𝑥𝑈)
10 ffvelcdm 7084 . . . . . 6 ((𝐹:𝐴𝑈𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
11103ad2antl3 1188 . . . . 5 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝑈)
12 gruop 10800 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ (𝐹𝑥) ∈ 𝑈) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
136, 9, 11, 12syl3anc 1372 . . . 4 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝑈)
1413fmpttd 7115 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈)
15 grurn 10796 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩):𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
1614, 15syld3an3 1410 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran (𝑥𝐴 ↦ ⟨𝑥, (𝐹𝑥)⟩) ∈ 𝑈)
175, 16eqeltrd 2834 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wcel 2107  cop 4635  cmpt 5232  ran crn 5678  wf 6540  cfv 6544  Univcgru 10785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-gru 10786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator