Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruf | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
gruf | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹:𝐴⟶𝑈) | |
2 | 1 | feqmptd 6819 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
3 | fvex 6769 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | fnasrn 6999 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) |
5 | 2, 4 | eqtrdi 2795 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉)) |
6 | simpl1 1189 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑈 ∈ Univ) | |
7 | gruel 10490 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) | |
8 | 7 | 3expa 1116 | . . . . . 6 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
9 | 8 | 3adantl3 1166 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
10 | ffvelrn 6941 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝑈 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) | |
11 | 10 | 3ad2antl3 1185 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) |
12 | gruop 10492 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ (𝐹‘𝑥) ∈ 𝑈) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) | |
13 | 6, 9, 11, 12 | syl3anc 1369 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) |
14 | 13 | fmpttd 6971 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) |
15 | grurn 10488 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) | |
16 | 14, 15 | syld3an3 1407 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) |
17 | 5, 16 | eqeltrd 2839 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 〈cop 4564 ↦ cmpt 5153 ran crn 5581 ⟶wf 6414 ‘cfv 6418 Univcgru 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-gru 10478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |