![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruf | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
gruf | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹:𝐴⟶𝑈) | |
2 | 1 | feqmptd 6977 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
3 | fvex 6920 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | fnasrn 7165 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) |
5 | 2, 4 | eqtrdi 2791 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉)) |
6 | simpl1 1190 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑈 ∈ Univ) | |
7 | gruel 10841 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) | |
8 | 7 | 3expa 1117 | . . . . . 6 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
9 | 8 | 3adantl3 1167 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
10 | ffvelcdm 7101 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝑈 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) | |
11 | 10 | 3ad2antl3 1186 | . . . . 5 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑈) |
12 | gruop 10843 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ (𝐹‘𝑥) ∈ 𝑈) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) | |
13 | 6, 9, 11, 12 | syl3anc 1370 | . . . 4 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝑈) |
14 | 13 | fmpttd 7135 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) |
15 | grurn 10839 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉):𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) | |
16 | 14, 15 | syld3an3 1408 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, (𝐹‘𝑥)〉) ∈ 𝑈) |
17 | 5, 16 | eqeltrd 2839 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 〈cop 4637 ↦ cmpt 5231 ran crn 5690 ⟶wf 6559 ‘cfv 6563 Univcgru 10828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-gru 10829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |