Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bncms | Structured version Visualization version GIF version |
Description: A Banach space is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
bncms | ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | 1 | isbn 24043 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ (Scalar‘𝑊) ∈ CMetSp)) |
3 | 2 | simp2bi 1143 | 1 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6339 Scalarcsca 16631 NrmVeccnvc 23288 CMetSpccms 24037 Bancbn 24038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-iota 6298 df-fv 6347 df-bn 24041 |
This theorem is referenced by: bncmet 24052 lssbn 24057 hlcms 24071 bncssbn 24079 sitgclbn 31833 |
Copyright terms: Public domain | W3C validator |