| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bncms | Structured version Visualization version GIF version | ||
| Description: A Banach space is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| bncms | ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | 1 | isbn 25254 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ (Scalar‘𝑊) ∈ CMetSp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 Scalarcsca 17182 NrmVeccnvc 24485 CMetSpccms 25248 Bancbn 25249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-bn 25252 |
| This theorem is referenced by: bncmet 25263 lssbn 25268 hlcms 25282 bncssbn 25290 sitgclbn 34310 |
| Copyright terms: Public domain | W3C validator |