MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bncms Structured version   Visualization version   GIF version

Theorem bncms 24711
Description: A Banach space is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
bncms (π‘Š ∈ Ban β†’ π‘Š ∈ CMetSp)

Proof of Theorem bncms
StepHypRef Expression
1 eqid 2737 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
21isbn 24705 . 2 (π‘Š ∈ Ban ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ (Scalarβ€˜π‘Š) ∈ CMetSp))
32simp2bi 1147 1 (π‘Š ∈ Ban β†’ π‘Š ∈ CMetSp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107  β€˜cfv 6497  Scalarcsca 17137  NrmVeccnvc 23940  CMetSpccms 24699  Bancbn 24700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-iota 6449  df-fv 6505  df-bn 24703
This theorem is referenced by:  bncmet  24714  lssbn  24719  hlcms  24733  bncssbn  24741  sitgclbn  32946
  Copyright terms: Public domain W3C validator