| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bncms | Structured version Visualization version GIF version | ||
| Description: A Banach space is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| bncms | ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | 1 | isbn 25263 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ (Scalar‘𝑊) ∈ CMetSp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 Scalarcsca 17161 NrmVeccnvc 24494 CMetSpccms 25257 Bancbn 25258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-bn 25261 |
| This theorem is referenced by: bncmet 25272 lssbn 25277 hlcms 25291 bncssbn 25299 sitgclbn 34351 |
| Copyright terms: Public domain | W3C validator |