Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt4 Structured version   Visualization version   GIF version

Theorem hlhgt4 39375
Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b 𝐵 = (Base‘𝐾)
hlhgt4.s < = (lt‘𝐾)
hlhgt4.z 0 = (0.‘𝐾)
hlhgt4.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hlhgt4 (𝐾 ∈ HL → ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem hlhgt4
StepHypRef Expression
1 hlhgt4.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 hlhgt4.s . . 3 < = (lt‘𝐾)
4 eqid 2729 . . 3 (join‘𝐾) = (join‘𝐾)
5 hlhgt4.z . . 3 0 = (0.‘𝐾)
6 hlhgt4.u . . 3 1 = (1.‘𝐾)
7 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat2 39339 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧𝑥𝑧𝑦𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
9 simprr 772 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧𝑥𝑧𝑦𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) → ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
108, 9sylbi 217 1 (𝐾 ∈ HL → ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  ltcplt 18249  joincjn 18252  0.cp0 18362  1.cp1 18363  CLatccla 18439  OMLcoml 39161  Atomscatm 39249  AtLatcal 39250  HLchlt 39336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-cvlat 39308  df-hlat 39337
This theorem is referenced by:  hlhgt2  39376  athgt  39443
  Copyright terms: Public domain W3C validator