Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhgt4 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
hlhgt4.b | ⊢ 𝐵 = (Base‘𝐾) |
hlhgt4.s | ⊢ < = (lt‘𝐾) |
hlhgt4.z | ⊢ 0 = (0.‘𝐾) |
hlhgt4.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
hlhgt4 | ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhgt4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2739 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | hlhgt4.s | . . 3 ⊢ < = (lt‘𝐾) | |
4 | eqid 2739 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | hlhgt4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
6 | hlhgt4.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
7 | eqid 2739 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ishlat2 37346 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
9 | simprr 769 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) | |
10 | 8, 9 | sylbi 216 | 1 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 lecple 16950 ltcplt 18007 joincjn 18010 0.cp0 18122 1.cp1 18123 CLatccla 18197 OMLcoml 37168 Atomscatm 37256 AtLatcal 37257 HLchlt 37343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-cvlat 37315 df-hlat 37344 |
This theorem is referenced by: hlhgt2 37382 athgt 37449 |
Copyright terms: Public domain | W3C validator |