| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhgt4 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.) |
| Ref | Expression |
|---|---|
| hlhgt4.b | ⊢ 𝐵 = (Base‘𝐾) |
| hlhgt4.s | ⊢ < = (lt‘𝐾) |
| hlhgt4.z | ⊢ 0 = (0.‘𝐾) |
| hlhgt4.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| hlhgt4 | ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhgt4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | hlhgt4.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 4 | eqid 2733 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | hlhgt4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 6 | hlhgt4.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 7 | eqid 2733 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ishlat2 39462 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
| 9 | simprr 772 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) | |
| 10 | 8, 9 | sylbi 217 | 1 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ∃wrex 3058 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 lecple 17178 ltcplt 18224 joincjn 18227 0.cp0 18337 1.cp1 18338 CLatccla 18414 OMLcoml 39284 Atomscatm 39372 AtLatcal 39373 HLchlt 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-cvlat 39431 df-hlat 39460 |
| This theorem is referenced by: hlhgt2 39498 athgt 39565 |
| Copyright terms: Public domain | W3C validator |