Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt4 Structured version   Visualization version   GIF version

Theorem hlhgt4 37381
Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b 𝐵 = (Base‘𝐾)
hlhgt4.s < = (lt‘𝐾)
hlhgt4.z 0 = (0.‘𝐾)
hlhgt4.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hlhgt4 (𝐾 ∈ HL → ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem hlhgt4
StepHypRef Expression
1 hlhgt4.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2739 . . 3 (le‘𝐾) = (le‘𝐾)
3 hlhgt4.s . . 3 < = (lt‘𝐾)
4 eqid 2739 . . 3 (join‘𝐾) = (join‘𝐾)
5 hlhgt4.z . . 3 0 = (0.‘𝐾)
6 hlhgt4.u . . 3 1 = (1.‘𝐾)
7 eqid 2739 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat2 37346 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧𝑥𝑧𝑦𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
9 simprr 769 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧𝑥𝑧𝑦𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) → ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
108, 9sylbi 216 1 (𝐾 ∈ HL → ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  ltcplt 18007  joincjn 18010  0.cp0 18122  1.cp1 18123  CLatccla 18197  OMLcoml 37168  Atomscatm 37256  AtLatcal 37257  HLchlt 37343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271  df-cvlat 37315  df-hlat 37344
This theorem is referenced by:  hlhgt2  37382  athgt  37449
  Copyright terms: Public domain W3C validator