![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhgt4 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
hlhgt4.b | ⊢ 𝐵 = (Base‘𝐾) |
hlhgt4.s | ⊢ < = (lt‘𝐾) |
hlhgt4.z | ⊢ 0 = (0.‘𝐾) |
hlhgt4.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
hlhgt4 | ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhgt4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2777 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | hlhgt4.s | . . 3 ⊢ < = (lt‘𝐾) | |
4 | eqid 2777 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | hlhgt4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
6 | hlhgt4.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
7 | eqid 2777 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ishlat2 35502 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
9 | simprr 763 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) | |
10 | 8, 9 | sylbi 209 | 1 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ∀wral 3089 ∃wrex 3090 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 lecple 16345 ltcplt 17327 joincjn 17330 0.cp0 17423 1.cp1 17424 CLatccla 17493 OMLcoml 35324 Atomscatm 35412 AtLatcal 35413 HLchlt 35499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-ov 6925 df-cvlat 35471 df-hlat 35500 |
This theorem is referenced by: hlhgt2 35538 athgt 35605 |
Copyright terms: Public domain | W3C validator |