Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhgt4 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
hlhgt4.b | ⊢ 𝐵 = (Base‘𝐾) |
hlhgt4.s | ⊢ < = (lt‘𝐾) |
hlhgt4.z | ⊢ 0 = (0.‘𝐾) |
hlhgt4.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
hlhgt4 | ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhgt4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2736 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | hlhgt4.s | . . 3 ⊢ < = (lt‘𝐾) | |
4 | eqid 2736 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | hlhgt4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
6 | hlhgt4.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
7 | eqid 2736 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ishlat2 37671 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
9 | simprr 770 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) | |
10 | 8, 9 | sylbi 216 | 1 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 class class class wbr 5093 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 lecple 17067 ltcplt 18124 joincjn 18127 0.cp0 18239 1.cp1 18240 CLatccla 18314 OMLcoml 37493 Atomscatm 37581 AtLatcal 37582 HLchlt 37668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-iota 6432 df-fv 6488 df-ov 7341 df-cvlat 37640 df-hlat 37669 |
This theorem is referenced by: hlhgt2 37708 athgt 37775 |
Copyright terms: Public domain | W3C validator |