| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhgt4 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011.) |
| Ref | Expression |
|---|---|
| hlhgt4.b | ⊢ 𝐵 = (Base‘𝐾) |
| hlhgt4.s | ⊢ < = (lt‘𝐾) |
| hlhgt4.z | ⊢ 0 = (0.‘𝐾) |
| hlhgt4.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| hlhgt4 | ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhgt4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | hlhgt4.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 4 | eqid 2730 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | hlhgt4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 6 | hlhgt4.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 7 | eqid 2730 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ishlat2 39371 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
| 9 | simprr 772 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥(le‘𝐾)𝑧 ∧ 𝑥(le‘𝐾)(𝑧(join‘𝐾)𝑦)) → 𝑦(le‘𝐾)(𝑧(join‘𝐾)𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) | |
| 10 | 8, 9 | sylbi 217 | 1 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 lecple 17160 ltcplt 18206 joincjn 18209 0.cp0 18319 1.cp1 18320 CLatccla 18396 OMLcoml 39193 Atomscatm 39281 AtLatcal 39282 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-cvlat 39340 df-hlat 39369 |
| This theorem is referenced by: hlhgt2 39407 athgt 39474 |
| Copyright terms: Public domain | W3C validator |