Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt2 Structured version   Visualization version   GIF version

Theorem hlhgt2 37140
Description: A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b 𝐵 = (Base‘𝐾)
hlhgt4.s < = (lt‘𝐾)
hlhgt4.z 0 = (0.‘𝐾)
hlhgt4.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hlhgt2 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾
Allowed substitution hints:   < (𝑥)   1 (𝑥)   0 (𝑥)

Proof of Theorem hlhgt2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhgt4.b . . 3 𝐵 = (Base‘𝐾)
2 hlhgt4.s . . 3 < = (lt‘𝐾)
3 hlhgt4.z . . 3 0 = (0.‘𝐾)
4 hlhgt4.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt4 37139 . 2 (𝐾 ∈ HL → ∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )))
6 hlpos 37117 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76ad3antrrr 730 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Poset)
8 hlop 37113 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
98ad3antrrr 730 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
101, 3op0cl 36935 . . . . . . . 8 (𝐾 ∈ OP → 0𝐵)
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 0𝐵)
12 simpllr 776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑦𝐵)
13 simplr 769 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑥𝐵)
141, 2plttr 17848 . . . . . . 7 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑦𝐵𝑥𝐵)) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
157, 11, 12, 13, 14syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
16 simpr 488 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
171, 4op1cl 36936 . . . . . . . 8 (𝐾 ∈ OP → 1𝐵)
189, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 1𝐵)
191, 2plttr 17848 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑧𝐵1𝐵)) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
207, 13, 16, 18, 19syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
2115, 20anim12d 612 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2221rexlimdva 3203 . . . 4 (((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) → (∃𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2322reximdva 3193 . . 3 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (∃𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
2423rexlimdva 3203 . 2 (𝐾 ∈ HL → (∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
255, 24mpd 15 1 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3062   class class class wbr 5053  cfv 6380  Basecbs 16760  Posetcpo 17814  ltcplt 17815  0.cp0 17929  1.cp1 17930  OPcops 36923  HLchlt 37101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-p0 17931  df-p1 17932  df-lat 17938  df-oposet 36927  df-ol 36929  df-oml 36930  df-atl 37049  df-cvlat 37073  df-hlat 37102
This theorem is referenced by:  hl0lt1N  37141  hl2at  37156
  Copyright terms: Public domain W3C validator