Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt2 Structured version   Visualization version   GIF version

Theorem hlhgt2 38260
Description: A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b 𝐵 = (Base‘𝐾)
hlhgt4.s < = (lt‘𝐾)
hlhgt4.z 0 = (0.‘𝐾)
hlhgt4.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hlhgt2 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾
Allowed substitution hints:   < (𝑥)   1 (𝑥)   0 (𝑥)

Proof of Theorem hlhgt2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhgt4.b . . 3 𝐵 = (Base‘𝐾)
2 hlhgt4.s . . 3 < = (lt‘𝐾)
3 hlhgt4.z . . 3 0 = (0.‘𝐾)
4 hlhgt4.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt4 38259 . 2 (𝐾 ∈ HL → ∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )))
6 hlpos 38236 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76ad3antrrr 729 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Poset)
8 hlop 38232 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
98ad3antrrr 729 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
101, 3op0cl 38054 . . . . . . . 8 (𝐾 ∈ OP → 0𝐵)
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 0𝐵)
12 simpllr 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑦𝐵)
13 simplr 768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑥𝐵)
141, 2plttr 18295 . . . . . . 7 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑦𝐵𝑥𝐵)) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
157, 11, 12, 13, 14syl13anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
16 simpr 486 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
171, 4op1cl 38055 . . . . . . . 8 (𝐾 ∈ OP → 1𝐵)
189, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 1𝐵)
191, 2plttr 18295 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑧𝐵1𝐵)) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
207, 13, 16, 18, 19syl13anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
2115, 20anim12d 610 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2221rexlimdva 3156 . . . 4 (((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) → (∃𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2322reximdva 3169 . . 3 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (∃𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
2423rexlimdva 3156 . 2 (𝐾 ∈ HL → (∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
255, 24mpd 15 1 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3071   class class class wbr 5149  cfv 6544  Basecbs 17144  Posetcpo 18260  ltcplt 18261  0.cp0 18376  1.cp1 18377  OPcops 38042  HLchlt 38220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-p0 18378  df-p1 18379  df-lat 18385  df-oposet 38046  df-ol 38048  df-oml 38049  df-atl 38168  df-cvlat 38192  df-hlat 38221
This theorem is referenced by:  hl0lt1N  38261  hl2at  38276
  Copyright terms: Public domain W3C validator