Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt2 Structured version   Visualization version   GIF version

Theorem hlhgt2 37925
Description: A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b 𝐵 = (Base‘𝐾)
hlhgt4.s < = (lt‘𝐾)
hlhgt4.z 0 = (0.‘𝐾)
hlhgt4.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hlhgt2 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾
Allowed substitution hints:   < (𝑥)   1 (𝑥)   0 (𝑥)

Proof of Theorem hlhgt2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhgt4.b . . 3 𝐵 = (Base‘𝐾)
2 hlhgt4.s . . 3 < = (lt‘𝐾)
3 hlhgt4.z . . 3 0 = (0.‘𝐾)
4 hlhgt4.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt4 37924 . 2 (𝐾 ∈ HL → ∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )))
6 hlpos 37901 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76ad3antrrr 728 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Poset)
8 hlop 37897 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
98ad3antrrr 728 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
101, 3op0cl 37719 . . . . . . . 8 (𝐾 ∈ OP → 0𝐵)
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 0𝐵)
12 simpllr 774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑦𝐵)
13 simplr 767 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑥𝐵)
141, 2plttr 18245 . . . . . . 7 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑦𝐵𝑥𝐵)) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
157, 11, 12, 13, 14syl13anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
16 simpr 485 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
171, 4op1cl 37720 . . . . . . . 8 (𝐾 ∈ OP → 1𝐵)
189, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 1𝐵)
191, 2plttr 18245 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑧𝐵1𝐵)) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
207, 13, 16, 18, 19syl13anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
2115, 20anim12d 609 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2221rexlimdva 3148 . . . 4 (((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) → (∃𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2322reximdva 3161 . . 3 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (∃𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
2423rexlimdva 3148 . 2 (𝐾 ∈ HL → (∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
255, 24mpd 15 1 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3069   class class class wbr 5110  cfv 6501  Basecbs 17094  Posetcpo 18210  ltcplt 18211  0.cp0 18326  1.cp1 18327  OPcops 37707  HLchlt 37885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-proset 18198  df-poset 18216  df-plt 18233  df-lub 18249  df-glb 18250  df-p0 18328  df-p1 18329  df-lat 18335  df-oposet 37711  df-ol 37713  df-oml 37714  df-atl 37833  df-cvlat 37857  df-hlat 37886
This theorem is referenced by:  hl0lt1N  37926  hl2at  37941
  Copyright terms: Public domain W3C validator