Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt2 Structured version   Visualization version   GIF version

Theorem hlhgt2 37403
Description: A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b 𝐵 = (Base‘𝐾)
hlhgt4.s < = (lt‘𝐾)
hlhgt4.z 0 = (0.‘𝐾)
hlhgt4.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hlhgt2 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾
Allowed substitution hints:   < (𝑥)   1 (𝑥)   0 (𝑥)

Proof of Theorem hlhgt2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhgt4.b . . 3 𝐵 = (Base‘𝐾)
2 hlhgt4.s . . 3 < = (lt‘𝐾)
3 hlhgt4.z . . 3 0 = (0.‘𝐾)
4 hlhgt4.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt4 37402 . 2 (𝐾 ∈ HL → ∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )))
6 hlpos 37380 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76ad3antrrr 727 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Poset)
8 hlop 37376 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
98ad3antrrr 727 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
101, 3op0cl 37198 . . . . . . . 8 (𝐾 ∈ OP → 0𝐵)
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 0𝐵)
12 simpllr 773 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑦𝐵)
13 simplr 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑥𝐵)
141, 2plttr 18060 . . . . . . 7 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑦𝐵𝑥𝐵)) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
157, 11, 12, 13, 14syl13anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
16 simpr 485 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
171, 4op1cl 37199 . . . . . . . 8 (𝐾 ∈ OP → 1𝐵)
189, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 1𝐵)
191, 2plttr 18060 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑧𝐵1𝐵)) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
207, 13, 16, 18, 19syl13anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
2115, 20anim12d 609 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2221rexlimdva 3213 . . . 4 (((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) → (∃𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2322reximdva 3203 . . 3 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (∃𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
2423rexlimdva 3213 . 2 (𝐾 ∈ HL → (∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
255, 24mpd 15 1 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  Basecbs 16912  Posetcpo 18025  ltcplt 18026  0.cp0 18141  1.cp1 18142  OPcops 37186  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-p0 18143  df-p1 18144  df-lat 18150  df-oposet 37190  df-ol 37192  df-oml 37193  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  hl0lt1N  37404  hl2at  37419
  Copyright terms: Public domain W3C validator