![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idresssidinxp | Structured version Visualization version GIF version |
Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.) |
Ref | Expression |
---|---|
idresssidinxp | ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6026 | . . 3 ⊢ ( I ↾ 𝐴) ⊆ I | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ I ) |
3 | idssxp 6074 | . . 3 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
4 | xpss2 5713 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐴) ⊆ (𝐴 × 𝐵)) | |
5 | 3, 4 | sstrid 4010 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
6 | 2, 5 | ssind 4252 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3965 ⊆ wss 3966 I cid 5586 × cxp 5691 ↾ cres 5695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-res 5705 |
This theorem is referenced by: idreseqidinxp 38305 |
Copyright terms: Public domain | W3C validator |