| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idresssidinxp | Structured version Visualization version GIF version | ||
| Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.) |
| Ref | Expression |
|---|---|
| idresssidinxp | ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5980 | . . 3 ⊢ ( I ↾ 𝐴) ⊆ I | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ I ) |
| 3 | idssxp 6028 | . . 3 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 4 | xpss2 5666 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐴) ⊆ (𝐴 × 𝐵)) | |
| 5 | 3, 4 | sstrid 3966 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
| 6 | 2, 5 | ssind 4212 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3921 ⊆ wss 3922 I cid 5540 × cxp 5644 ↾ cres 5648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-res 5658 |
| This theorem is referenced by: idreseqidinxp 38294 |
| Copyright terms: Public domain | W3C validator |