Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idresssidinxp Structured version   Visualization version   GIF version

Theorem idresssidinxp 38266
Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.)
Assertion
Ref Expression
idresssidinxp (𝐴𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵)))

Proof of Theorem idresssidinxp
StepHypRef Expression
1 resss 6033 . . 3 ( I ↾ 𝐴) ⊆ I
21a1i 11 . 2 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ I )
3 idssxp 6080 . . 3 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
4 xpss2 5720 . . 3 (𝐴𝐵 → (𝐴 × 𝐴) ⊆ (𝐴 × 𝐵))
53, 4sstrid 4020 . 2 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐵))
62, 5ssind 4262 1 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3975  wss 3976   I cid 5592   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-res 5712
This theorem is referenced by:  idreseqidinxp  38267
  Copyright terms: Public domain W3C validator