Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idresssidinxp | Structured version Visualization version GIF version |
Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.) |
Ref | Expression |
---|---|
idresssidinxp | ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5890 | . . 3 ⊢ ( I ↾ 𝐴) ⊆ I | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ I ) |
3 | idssxp 5930 | . . 3 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
4 | xpss2 5585 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐴) ⊆ (𝐴 × 𝐵)) | |
5 | 3, 4 | sstrid 3926 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
6 | 2, 5 | ssind 4161 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3879 ⊆ wss 3880 I cid 5468 × cxp 5563 ↾ cres 5567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pr 5336 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-br 5068 df-opab 5130 df-id 5469 df-xp 5571 df-rel 5572 df-res 5577 |
This theorem is referenced by: idreseqidinxp 36208 |
Copyright terms: Public domain | W3C validator |