Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idresssidinxp Structured version   Visualization version   GIF version

Theorem idresssidinxp 36207
Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.)
Assertion
Ref Expression
idresssidinxp (𝐴𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵)))

Proof of Theorem idresssidinxp
StepHypRef Expression
1 resss 5890 . . 3 ( I ↾ 𝐴) ⊆ I
21a1i 11 . 2 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ I )
3 idssxp 5930 . . 3 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
4 xpss2 5585 . . 3 (𝐴𝐵 → (𝐴 × 𝐴) ⊆ (𝐴 × 𝐵))
53, 4sstrid 3926 . 2 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐵))
62, 5ssind 4161 1 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3879  wss 3880   I cid 5468   × cxp 5563  cres 5567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pr 5336
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3422  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-sn 4556  df-pr 4558  df-op 4562  df-br 5068  df-opab 5130  df-id 5469  df-xp 5571  df-rel 5572  df-res 5577
This theorem is referenced by:  idreseqidinxp  36208
  Copyright terms: Public domain W3C validator