Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idresssidinxp Structured version   Visualization version   GIF version

Theorem idresssidinxp 38369
Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.)
Assertion
Ref Expression
idresssidinxp (𝐴𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵)))

Proof of Theorem idresssidinxp
StepHypRef Expression
1 resss 5956 . . 3 ( I ↾ 𝐴) ⊆ I
21a1i 11 . 2 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ I )
3 idssxp 6004 . . 3 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
4 xpss2 5641 . . 3 (𝐴𝐵 → (𝐴 × 𝐴) ⊆ (𝐴 × 𝐵))
53, 4sstrid 3942 . 2 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐵))
62, 5ssind 4190 1 (𝐴𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3897  wss 3898   I cid 5515   × cxp 5619  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-res 5633
This theorem is referenced by:  idreseqidinxp  38370
  Copyright terms: Public domain W3C validator