| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > symrefref2 | Structured version Visualization version GIF version | ||
| Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 38600. (Contributed by Peter Mazsa, 19-Jul-2018.) |
| Ref | Expression |
|---|---|
| symrefref2 | ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnss 5879 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 → ran ◡𝑅 ⊆ ran 𝑅) | |
| 2 | rncnv 38333 | . . . . 5 ⊢ ran ◡𝑅 = dom 𝑅 | |
| 3 | 2 | sseq1i 3963 | . . . 4 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅) |
| 4 | 3 | biimpi 216 | . . 3 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅) |
| 5 | idreseqidinxp 38342 | . . 3 ⊢ (dom 𝑅 ⊆ ran 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) | |
| 6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) |
| 7 | 6 | sseq1d 3966 | 1 ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∩ cin 3901 ⊆ wss 3902 I cid 5510 × cxp 5614 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 |
| This theorem is referenced by: symrefref3 38600 refsymrels2 38601 refsymrel2 38603 |
| Copyright terms: Public domain | W3C validator |