Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > symrefref2 | Structured version Visualization version GIF version |
Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 36678. (Contributed by Peter Mazsa, 19-Jul-2018.) |
Ref | Expression |
---|---|
symrefref2 | ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnss 5848 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 → ran ◡𝑅 ⊆ ran 𝑅) | |
2 | rncnv 36436 | . . . . 5 ⊢ ran ◡𝑅 = dom 𝑅 | |
3 | 2 | sseq1i 3949 | . . . 4 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅) |
4 | 3 | biimpi 215 | . . 3 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅) |
5 | idreseqidinxp 36445 | . . 3 ⊢ (dom 𝑅 ⊆ ran 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) | |
6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) |
7 | 6 | sseq1d 3952 | 1 ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 I cid 5488 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 |
This theorem is referenced by: symrefref3 36678 refsymrels2 36679 refsymrel2 36681 |
Copyright terms: Public domain | W3C validator |