Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrefref2 Structured version   Visualization version   GIF version

Theorem symrefref2 38561
Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 38562. (Contributed by Peter Mazsa, 19-Jul-2018.)
Assertion
Ref Expression
symrefref2 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))

Proof of Theorem symrefref2
StepHypRef Expression
1 rnss 5906 . . 3 (𝑅𝑅 → ran 𝑅 ⊆ ran 𝑅)
2 rncnv 38295 . . . . 5 ran 𝑅 = dom 𝑅
32sseq1i 3978 . . . 4 (ran 𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅)
43biimpi 216 . . 3 (ran 𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅)
5 idreseqidinxp 38304 . . 3 (dom 𝑅 ⊆ ran 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅))
61, 4, 53syl 18 . 2 (𝑅𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅))
76sseq1d 3981 1 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  cin 3916  wss 3917   I cid 5535   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  symrefref3  38562  refsymrels2  38563  refsymrel2  38565
  Copyright terms: Public domain W3C validator