Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrefref2 Structured version   Visualization version   GIF version

Theorem symrefref2 36677
Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 36678. (Contributed by Peter Mazsa, 19-Jul-2018.)
Assertion
Ref Expression
symrefref2 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))

Proof of Theorem symrefref2
StepHypRef Expression
1 rnss 5848 . . 3 (𝑅𝑅 → ran 𝑅 ⊆ ran 𝑅)
2 rncnv 36436 . . . . 5 ran 𝑅 = dom 𝑅
32sseq1i 3949 . . . 4 (ran 𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅)
43biimpi 215 . . 3 (ran 𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅)
5 idreseqidinxp 36445 . . 3 (dom 𝑅 ⊆ ran 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅))
61, 4, 53syl 18 . 2 (𝑅𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅))
76sseq1d 3952 1 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  cin 3886  wss 3887   I cid 5488   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by:  symrefref3  36678  refsymrels2  36679  refsymrel2  36681
  Copyright terms: Public domain W3C validator