| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > symrefref2 | Structured version Visualization version GIF version | ||
| Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 38562. (Contributed by Peter Mazsa, 19-Jul-2018.) |
| Ref | Expression |
|---|---|
| symrefref2 | ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnss 5906 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 → ran ◡𝑅 ⊆ ran 𝑅) | |
| 2 | rncnv 38295 | . . . . 5 ⊢ ran ◡𝑅 = dom 𝑅 | |
| 3 | 2 | sseq1i 3978 | . . . 4 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅) |
| 4 | 3 | biimpi 216 | . . 3 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅) |
| 5 | idreseqidinxp 38304 | . . 3 ⊢ (dom 𝑅 ⊆ ran 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) | |
| 6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) |
| 7 | 6 | sseq1d 3981 | 1 ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∩ cin 3916 ⊆ wss 3917 I cid 5535 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 |
| This theorem is referenced by: symrefref3 38562 refsymrels2 38563 refsymrel2 38565 |
| Copyright terms: Public domain | W3C validator |