Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrefref2 Structured version   Visualization version   GIF version

Theorem symrefref2 35959
Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 35960. (Contributed by Peter Mazsa, 19-Jul-2018.)
Assertion
Ref Expression
symrefref2 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))

Proof of Theorem symrefref2
StepHypRef Expression
1 rnss 5773 . . 3 (𝑅𝑅 → ran 𝑅 ⊆ ran 𝑅)
2 rncnv 35718 . . . . 5 ran 𝑅 = dom 𝑅
32sseq1i 3943 . . . 4 (ran 𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅)
43biimpi 219 . . 3 (ran 𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅)
5 idreseqidinxp 35727 . . 3 (dom 𝑅 ⊆ ran 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅))
61, 4, 53syl 18 . 2 (𝑅𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅))
76sseq1d 3946 1 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  cin 3880  wss 3881   I cid 5424   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531
This theorem is referenced by:  symrefref3  35960  refsymrels2  35961  refsymrel2  35963
  Copyright terms: Public domain W3C validator