![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extid | Structured version Visualization version GIF version |
Description: Property of identity relation, see also extep 38239, extssr 38465 and the comment of df-ssr 38454. (Contributed by Peter Mazsa, 5-Jul-2019.) |
Ref | Expression |
---|---|
extid | ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6173 | . . . . 5 ⊢ ◡ I = I | |
2 | 1 | eceq2i 8805 | . . . 4 ⊢ [𝐴]◡ I = [𝐴] I |
3 | ecidsn 8818 | . . . 4 ⊢ [𝐴] I = {𝐴} | |
4 | 2, 3 | eqtri 2768 | . . 3 ⊢ [𝐴]◡ I = {𝐴} |
5 | 1 | eceq2i 8805 | . . . 4 ⊢ [𝐵]◡ I = [𝐵] I |
6 | ecidsn 8818 | . . . 4 ⊢ [𝐵] I = {𝐵} | |
7 | 5, 6 | eqtri 2768 | . . 3 ⊢ [𝐵]◡ I = {𝐵} |
8 | 4, 7 | eqeq12i 2758 | . 2 ⊢ ([𝐴]◡ I = [𝐵]◡ I ↔ {𝐴} = {𝐵}) |
9 | sneqbg 4868 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
10 | 8, 9 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {csn 4648 I cid 5592 ◡ccnv 5699 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |