Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extid Structured version   Visualization version   GIF version

Theorem extid 37782
Description: Property of identity relation, see also extep 37755, extssr 37981 and the comment of df-ssr 37970. (Contributed by Peter Mazsa, 5-Jul-2019.)
Assertion
Ref Expression
extid (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))

Proof of Theorem extid
StepHypRef Expression
1 cnvi 6146 . . . . 5 I = I
21eceq2i 8765 . . . 4 [𝐴] I = [𝐴] I
3 ecidsn 8778 . . . 4 [𝐴] I = {𝐴}
42, 3eqtri 2756 . . 3 [𝐴] I = {𝐴}
51eceq2i 8765 . . . 4 [𝐵] I = [𝐵] I
6 ecidsn 8778 . . . 4 [𝐵] I = {𝐵}
75, 6eqtri 2756 . . 3 [𝐵] I = {𝐵}
84, 7eqeq12i 2746 . 2 ([𝐴] I = [𝐵] I ↔ {𝐴} = {𝐵})
9 sneqbg 4845 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
108, 9bitrid 283 1 (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  {csn 4629   I cid 5575  ccnv 5677  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ec 8726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator