Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extid Structured version   Visualization version   GIF version

Theorem extid 36373
Description: Property of identity relation, see also extep 36345, extssr 36554 and the comment of df-ssr 36543. (Contributed by Peter Mazsa, 5-Jul-2019.)
Assertion
Ref Expression
extid (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))

Proof of Theorem extid
StepHypRef Expression
1 cnvi 6034 . . . . 5 I = I
21eceq2i 8497 . . . 4 [𝐴] I = [𝐴] I
3 ecidsn 8509 . . . 4 [𝐴] I = {𝐴}
42, 3eqtri 2766 . . 3 [𝐴] I = {𝐴}
51eceq2i 8497 . . . 4 [𝐵] I = [𝐵] I
6 ecidsn 8509 . . . 4 [𝐵] I = {𝐵}
75, 6eqtri 2766 . . 3 [𝐵] I = {𝐵}
84, 7eqeq12i 2756 . 2 ([𝐴] I = [𝐵] I ↔ {𝐴} = {𝐵})
9 sneqbg 4771 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
108, 9syl5bb 282 1 (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {csn 4558   I cid 5479  ccnv 5579  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator