| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extid | Structured version Visualization version GIF version | ||
| Description: Property of identity relation, see also extep 38256, extssr 38485 and the comment of df-ssr 38474. (Contributed by Peter Mazsa, 5-Jul-2019.) |
| Ref | Expression |
|---|---|
| extid | ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 6094 | . . . . 5 ⊢ ◡ I = I | |
| 2 | 1 | eceq2i 8674 | . . . 4 ⊢ [𝐴]◡ I = [𝐴] I |
| 3 | ecidsn 8690 | . . . 4 ⊢ [𝐴] I = {𝐴} | |
| 4 | 2, 3 | eqtri 2752 | . . 3 ⊢ [𝐴]◡ I = {𝐴} |
| 5 | 1 | eceq2i 8674 | . . . 4 ⊢ [𝐵]◡ I = [𝐵] I |
| 6 | ecidsn 8690 | . . . 4 ⊢ [𝐵] I = {𝐵} | |
| 7 | 5, 6 | eqtri 2752 | . . 3 ⊢ [𝐵]◡ I = {𝐵} |
| 8 | 4, 7 | eqeq12i 2747 | . 2 ⊢ ([𝐴]◡ I = [𝐵]◡ I ↔ {𝐴} = {𝐵}) |
| 9 | sneqbg 4797 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
| 10 | 8, 9 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4579 I cid 5517 ◡ccnv 5622 [cec 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |