![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extid | Structured version Visualization version GIF version |
Description: Property of identity relation, see also extep 38265, extssr 38491 and the comment of df-ssr 38480. (Contributed by Peter Mazsa, 5-Jul-2019.) |
Ref | Expression |
---|---|
extid | ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6164 | . . . . 5 ⊢ ◡ I = I | |
2 | 1 | eceq2i 8786 | . . . 4 ⊢ [𝐴]◡ I = [𝐴] I |
3 | ecidsn 8799 | . . . 4 ⊢ [𝐴] I = {𝐴} | |
4 | 2, 3 | eqtri 2763 | . . 3 ⊢ [𝐴]◡ I = {𝐴} |
5 | 1 | eceq2i 8786 | . . . 4 ⊢ [𝐵]◡ I = [𝐵] I |
6 | ecidsn 8799 | . . . 4 ⊢ [𝐵] I = {𝐵} | |
7 | 5, 6 | eqtri 2763 | . . 3 ⊢ [𝐵]◡ I = {𝐵} |
8 | 4, 7 | eqeq12i 2753 | . 2 ⊢ ([𝐴]◡ I = [𝐵]◡ I ↔ {𝐴} = {𝐵}) |
9 | sneqbg 4848 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
10 | 8, 9 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {csn 4631 I cid 5582 ◡ccnv 5688 [cec 8742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |