Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > extid | Structured version Visualization version GIF version |
Description: Property of identity relation, see also extep 36418, extssr 36627 and the comment of df-ssr 36616. (Contributed by Peter Mazsa, 5-Jul-2019.) |
Ref | Expression |
---|---|
extid | ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6045 | . . . . 5 ⊢ ◡ I = I | |
2 | 1 | eceq2i 8539 | . . . 4 ⊢ [𝐴]◡ I = [𝐴] I |
3 | ecidsn 8551 | . . . 4 ⊢ [𝐴] I = {𝐴} | |
4 | 2, 3 | eqtri 2766 | . . 3 ⊢ [𝐴]◡ I = {𝐴} |
5 | 1 | eceq2i 8539 | . . . 4 ⊢ [𝐵]◡ I = [𝐵] I |
6 | ecidsn 8551 | . . . 4 ⊢ [𝐵] I = {𝐵} | |
7 | 5, 6 | eqtri 2766 | . . 3 ⊢ [𝐵]◡ I = {𝐵} |
8 | 4, 7 | eqeq12i 2756 | . 2 ⊢ ([𝐴]◡ I = [𝐵]◡ I ↔ {𝐴} = {𝐵}) |
9 | sneqbg 4774 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
10 | 8, 9 | syl5bb 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {csn 4561 I cid 5488 ◡ccnv 5588 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |