![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extid | Structured version Visualization version GIF version |
Description: Property of identity relation, see also extep 37654, extssr 37882 and the comment of df-ssr 37871. (Contributed by Peter Mazsa, 5-Jul-2019.) |
Ref | Expression |
---|---|
extid | ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6132 | . . . . 5 ⊢ ◡ I = I | |
2 | 1 | eceq2i 8741 | . . . 4 ⊢ [𝐴]◡ I = [𝐴] I |
3 | ecidsn 8753 | . . . 4 ⊢ [𝐴] I = {𝐴} | |
4 | 2, 3 | eqtri 2752 | . . 3 ⊢ [𝐴]◡ I = {𝐴} |
5 | 1 | eceq2i 8741 | . . . 4 ⊢ [𝐵]◡ I = [𝐵] I |
6 | ecidsn 8753 | . . . 4 ⊢ [𝐵] I = {𝐵} | |
7 | 5, 6 | eqtri 2752 | . . 3 ⊢ [𝐵]◡ I = {𝐵} |
8 | 4, 7 | eqeq12i 2742 | . 2 ⊢ ([𝐴]◡ I = [𝐵]◡ I ↔ {𝐴} = {𝐵}) |
9 | sneqbg 4837 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
10 | 8, 9 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {csn 4621 I cid 5564 ◡ccnv 5666 [cec 8698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |