Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extid Structured version   Visualization version   GIF version

Theorem extid 38311
Description: Property of identity relation, see also extep 38284, extssr 38510 and the comment of df-ssr 38499. (Contributed by Peter Mazsa, 5-Jul-2019.)
Assertion
Ref Expression
extid (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))

Proof of Theorem extid
StepHypRef Expression
1 cnvi 6161 . . . . 5 I = I
21eceq2i 8787 . . . 4 [𝐴] I = [𝐴] I
3 ecidsn 8800 . . . 4 [𝐴] I = {𝐴}
42, 3eqtri 2765 . . 3 [𝐴] I = {𝐴}
51eceq2i 8787 . . . 4 [𝐵] I = [𝐵] I
6 ecidsn 8800 . . . 4 [𝐵] I = {𝐵}
75, 6eqtri 2765 . . 3 [𝐵] I = {𝐵}
84, 7eqeq12i 2755 . 2 ([𝐴] I = [𝐵] I ↔ {𝐴} = {𝐵})
9 sneqbg 4843 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
108, 9bitrid 283 1 (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {csn 4626   I cid 5577  ccnv 5684  [cec 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator