Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extid Structured version   Visualization version   GIF version

Theorem extid 38283
Description: Property of identity relation, see also extep 38256, extssr 38485 and the comment of df-ssr 38474. (Contributed by Peter Mazsa, 5-Jul-2019.)
Assertion
Ref Expression
extid (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))

Proof of Theorem extid
StepHypRef Expression
1 cnvi 6094 . . . . 5 I = I
21eceq2i 8674 . . . 4 [𝐴] I = [𝐴] I
3 ecidsn 8690 . . . 4 [𝐴] I = {𝐴}
42, 3eqtri 2752 . . 3 [𝐴] I = {𝐴}
51eceq2i 8674 . . . 4 [𝐵] I = [𝐵] I
6 ecidsn 8690 . . . 4 [𝐵] I = {𝐵}
75, 6eqtri 2752 . . 3 [𝐵] I = {𝐵}
84, 7eqeq12i 2747 . 2 ([𝐴] I = [𝐵] I ↔ {𝐴} = {𝐵})
9 sneqbg 4797 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
108, 9bitrid 283 1 (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {csn 4579   I cid 5517  ccnv 5622  [cec 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator