Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > extid | Structured version Visualization version GIF version |
Description: Property of identity relation, see also extep 36345, extssr 36554 and the comment of df-ssr 36543. (Contributed by Peter Mazsa, 5-Jul-2019.) |
Ref | Expression |
---|---|
extid | ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6034 | . . . . 5 ⊢ ◡ I = I | |
2 | 1 | eceq2i 8497 | . . . 4 ⊢ [𝐴]◡ I = [𝐴] I |
3 | ecidsn 8509 | . . . 4 ⊢ [𝐴] I = {𝐴} | |
4 | 2, 3 | eqtri 2766 | . . 3 ⊢ [𝐴]◡ I = {𝐴} |
5 | 1 | eceq2i 8497 | . . . 4 ⊢ [𝐵]◡ I = [𝐵] I |
6 | ecidsn 8509 | . . . 4 ⊢ [𝐵] I = {𝐵} | |
7 | 5, 6 | eqtri 2766 | . . 3 ⊢ [𝐵]◡ I = {𝐵} |
8 | 4, 7 | eqeq12i 2756 | . 2 ⊢ ([𝐴]◡ I = [𝐵]◡ I ↔ {𝐴} = {𝐵}) |
9 | sneqbg 4771 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
10 | 8, 9 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴]◡ I = [𝐵]◡ I ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {csn 4558 I cid 5479 ◡ccnv 5579 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |