Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extid Structured version   Visualization version   GIF version

Theorem extid 36446
Description: Property of identity relation, see also extep 36418, extssr 36627 and the comment of df-ssr 36616. (Contributed by Peter Mazsa, 5-Jul-2019.)
Assertion
Ref Expression
extid (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))

Proof of Theorem extid
StepHypRef Expression
1 cnvi 6045 . . . . 5 I = I
21eceq2i 8539 . . . 4 [𝐴] I = [𝐴] I
3 ecidsn 8551 . . . 4 [𝐴] I = {𝐴}
42, 3eqtri 2766 . . 3 [𝐴] I = {𝐴}
51eceq2i 8539 . . . 4 [𝐵] I = [𝐵] I
6 ecidsn 8551 . . . 4 [𝐵] I = {𝐵}
75, 6eqtri 2766 . . 3 [𝐵] I = {𝐵}
84, 7eqeq12i 2756 . 2 ([𝐴] I = [𝐵] I ↔ {𝐴} = {𝐵})
9 sneqbg 4774 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
108, 9syl5bb 283 1 (𝐴𝑉 → ([𝐴] I = [𝐵] I ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  {csn 4561   I cid 5488  ccnv 5588  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator