MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgvalprc Structured version   Visualization version   GIF version

Theorem iedgvalprc 28979
Description: Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
Assertion
Ref Expression
iedgvalprc (𝐶 ∉ V → (iEdg‘𝐶) = ∅)

Proof of Theorem iedgvalprc
StepHypRef Expression
1 df-nel 3031 . 2 (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V)
2 fvprc 6852 . 2 𝐶 ∈ V → (iEdg‘𝐶) = ∅)
31, 2sylbi 217 1 (𝐶 ∉ V → (iEdg‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wnel 3030  Vcvv 3450  c0 4298  cfv 6513  iEdgciedg 28930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator