MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgvalprc Structured version   Visualization version   GIF version

Theorem iedgvalprc 27416
Description: Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
Assertion
Ref Expression
iedgvalprc (𝐶 ∉ V → (iEdg‘𝐶) = ∅)

Proof of Theorem iedgvalprc
StepHypRef Expression
1 df-nel 3050 . 2 (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V)
2 fvprc 6766 . 2 𝐶 ∈ V → (iEdg‘𝐶) = ∅)
31, 2sylbi 216 1 (𝐶 ∉ V → (iEdg‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wnel 3049  Vcvv 3432  c0 4256  cfv 6433  iEdgciedg 27367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator