![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iedgvalprc | Structured version Visualization version GIF version |
Description: Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
Ref | Expression |
---|---|
iedgvalprc | ⊢ (𝐶 ∉ V → (iEdg‘𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3043 | . 2 ⊢ (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V) | |
2 | fvprc 6884 | . 2 ⊢ (¬ 𝐶 ∈ V → (iEdg‘𝐶) = ∅) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐶 ∉ V → (iEdg‘𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∉ wnel 3042 Vcvv 3470 ∅c0 4319 ‘cfv 6543 iEdgciedg 28804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-iota 6495 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |