![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iedgvalprc | Structured version Visualization version GIF version |
Description: Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
Ref | Expression |
---|---|
iedgvalprc | ⊢ (𝐶 ∉ V → (iEdg‘𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3047 | . 2 ⊢ (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V) | |
2 | fvprc 6906 | . 2 ⊢ (¬ 𝐶 ∈ V → (iEdg‘𝐶) = ∅) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐶 ∉ V → (iEdg‘𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∉ wnel 3046 Vcvv 3481 ∅c0 4342 ‘cfv 6569 iEdgciedg 29040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |