|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vtxvalprc | Structured version Visualization version GIF version | ||
| Description: Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| vtxvalprc | ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nel 3047 | . 2 ⊢ (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V) | |
| 2 | fvprc 6898 | . 2 ⊢ (¬ 𝐶 ∈ V → (Vtx‘𝐶) = ∅) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∉ wnel 3046 Vcvv 3480 ∅c0 4333 ‘cfv 6561 Vtxcvtx 29013 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 | 
| This theorem is referenced by: wlk0prc 29672 | 
| Copyright terms: Public domain | W3C validator |