| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxvalprc | Structured version Visualization version GIF version | ||
| Description: Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| Ref | Expression |
|---|---|
| vtxvalprc | ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3033 | . 2 ⊢ (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V) | |
| 2 | fvprc 6809 | . 2 ⊢ (¬ 𝐶 ∈ V → (Vtx‘𝐶) = ∅) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 Vcvv 3436 ∅c0 4278 ‘cfv 6476 Vtxcvtx 28969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: wlk0prc 29626 |
| Copyright terms: Public domain | W3C validator |