MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxvalprc Structured version   Visualization version   GIF version

Theorem vtxvalprc 27523
Description: Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
Assertion
Ref Expression
vtxvalprc (𝐶 ∉ V → (Vtx‘𝐶) = ∅)

Proof of Theorem vtxvalprc
StepHypRef Expression
1 df-nel 3048 . 2 (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V)
2 fvprc 6801 . 2 𝐶 ∈ V → (Vtx‘𝐶) = ∅)
31, 2sylbi 216 1 (𝐶 ∉ V → (Vtx‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  wnel 3047  Vcvv 3441  c0 4266  cfv 6463  Vtxcvtx 27474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-iota 6415  df-fv 6471
This theorem is referenced by:  wlk0prc  28129
  Copyright terms: Public domain W3C validator