Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxvalprc | Structured version Visualization version GIF version |
Description: Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
Ref | Expression |
---|---|
vtxvalprc | ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3051 | . 2 ⊢ (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V) | |
2 | fvprc 6760 | . 2 ⊢ (¬ 𝐶 ∈ V → (Vtx‘𝐶) = ∅) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2109 ∉ wnel 3050 Vcvv 3430 ∅c0 4261 ‘cfv 6430 Vtxcvtx 27347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 |
This theorem is referenced by: wlk0prc 28001 |
Copyright terms: Public domain | W3C validator |