MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxvalprc Structured version   Visualization version   GIF version

Theorem vtxvalprc 29044
Description: Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
Assertion
Ref Expression
vtxvalprc (𝐶 ∉ V → (Vtx‘𝐶) = ∅)

Proof of Theorem vtxvalprc
StepHypRef Expression
1 df-nel 3034 . 2 (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V)
2 fvprc 6823 . 2 𝐶 ∈ V → (Vtx‘𝐶) = ∅)
31, 2sylbi 217 1 (𝐶 ∉ V → (Vtx‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  wnel 3033  Vcvv 3437  c0 4282  cfv 6489  Vtxcvtx 28995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-nel 3034  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497
This theorem is referenced by:  wlk0prc  29652
  Copyright terms: Public domain W3C validator