| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxvalprc | Structured version Visualization version GIF version | ||
| Description: Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| Ref | Expression |
|---|---|
| vtxvalprc | ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3034 | . 2 ⊢ (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V) | |
| 2 | fvprc 6823 | . 2 ⊢ (¬ 𝐶 ∈ V → (Vtx‘𝐶) = ∅) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 Vcvv 3437 ∅c0 4282 ‘cfv 6489 Vtxcvtx 28995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-nel 3034 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: wlk0prc 29652 |
| Copyright terms: Public domain | W3C validator |