![]() |
Metamath
Proof Explorer Theorem List (p. 286 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tgjustc1 28501* | A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) ⇒ ⊢ ∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑟〈𝑦, 𝑧〉 ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) | ||
Theorem | tgjustc2 28502* | A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝑅 Er (𝑃 × 𝑃) ⇒ ⊢ ∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) | ||
Theorem | tgcgrcomimp 28503 | Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐶))) | ||
Theorem | tgcgrcomr 28504 | Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐶)) | ||
Theorem | tgcgrcoml 28505 | Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐶 − 𝐷)) | ||
Theorem | tgcgrcomlr 28506 | Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) | ||
Theorem | tgcgreqb 28507 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | ||
Theorem | tgcgreq 28508 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | tgcgrneq 28509 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | tgcgrtriv 28510 | Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − 𝐴) = (𝐵 − 𝐵)) | ||
Theorem | tgcgrextend 28511 | Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) | ||
Theorem | tgsegconeq 28512 | Two points that satisfy the conclusion of axtgsegcon 28490 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ≠ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐸 = 𝐹) | ||
Theorem | tgbtwntriv2 28513 | Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐵)) | ||
Theorem | tgbtwncom 28514 | Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) | ||
Theorem | tgbtwncomb 28515 | Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴))) | ||
Theorem | tgbtwnne 28516 | Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | tgbtwntriv1 28517 | Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐴𝐼𝐵)) | ||
Theorem | tgbtwnswapid 28518 | If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | tgbtwnintr 28519 | Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐷)) & ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | ||
Theorem | tgbtwnexch3 28520 | Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) | ||
Theorem | tgbtwnouttr2 28521 | Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgbtwnexch2 28522 | Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgbtwnouttr 28523 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgbtwnexch 28524 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgtrisegint 28525* | A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐶)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝑃 (𝑞 ∈ (𝐹𝐼𝐶) ∧ 𝑞 ∈ (𝐵𝐼𝐸))) | ||
Theorem | tglowdim1 28526* | Lower dimension axiom for one dimension. In dimension at least 1, there are at least two distinct points. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) to avoid a new definition, but a different convention could be chosen. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑥 ≠ 𝑦) | ||
Theorem | tglowdim1i 28527* | Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) | ||
Theorem | tgldimor 28528 | Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
⊢ 𝑃 = (𝐸‘𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) | ||
Theorem | tgldim0eq 28529 | In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
⊢ 𝑃 = (𝐸‘𝐹) & ⊢ (𝜑 → (♯‘𝑃) = 1) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | tgldim0itv 28530 | In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 12-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (♯‘𝑃) = 1) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) | ||
Theorem | tgldim0cgr 28531 | In dimension zero, any two pairs of points are congruent. (Contributed by Thierry Arnoux, 12-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (♯‘𝑃) = 1) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | ||
Theorem | tgbtwndiff 28532* | There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) | ||
Theorem | tgdim01 28533 | In geometries of dimension less than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) | ||
Theorem | tgifscgr 28534 | Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐾, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐾. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐾 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐹 ∈ (𝐸𝐼𝐾)) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐸 − 𝐾)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐹 − 𝐾)) & ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐸 − 𝐻)) & ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐾 − 𝐻)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐹 − 𝐻)) | ||
Theorem | tgcgrsub 28535 | Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | ||
Syntax | ccgrg 28536 | Declare the constant for the congruence between shapes relation. |
class cgrG | ||
Definition | df-cgrg 28537* |
Define the relation of congruence between shapes. Definition 4.4 of
[Schwabhauser] p. 35. A
"shape" is a finite sequence of points, and a
triangle can be represented as a shape with three points. Two shapes
are congruent if all corresponding segments between all corresponding
points are congruent.
Many systems of geometry define triangle congruence as requiring both segment congruence and angle congruence. Such systems, such as Hilbert's axiomatic system, typically have a primitive notion of angle congruence in addition to segment congruence. Here, angle congruence is instead a derived notion, defined later in df-cgra 28834 and expanded in iscgra 28835. This does not mean our system is weaker; dfcgrg2 28889 proves that these two definitions are equivalent, and using the Tarski definition instead (given in [Schwabhauser] p. 35) is simpler. Once two triangles are proven congruent as defined here, you can use various theorems to prove that corresponding parts of congruent triangles are congruent (CPCTC). For example, see cgr3simp1 28546, cgr3simp2 28547, cgr3simp3 28548, cgrcgra 28847, and permutation laws such as cgr3swap12 28549 and dfcgrg2 28889. Ideally, we would define this for functions of any set, but we will use words (see df-word 14563) in most cases. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ cgrG = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗))))}) | ||
Theorem | iscgrg 28538* | The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) | ||
Theorem | iscgrgd 28539* | The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) & ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) ⇒ ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) | ||
Theorem | iscgrglt 28540* | The property for two sequences 𝐴 and 𝐵 of points to be congruent, where the congruence is only required for indices verifying a less-than relation. (Contributed by Thierry Arnoux, 7-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) & ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) ⇒ ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) | ||
Theorem | trgcgrg 28541 | The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) | ||
Theorem | trgcgr 28542 | Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | ||
Theorem | ercgrg 28543 | The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃 ↑pm ℝ)) | ||
Theorem | tgcgrxfr 28544* | A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) ⇒ ⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) | ||
Theorem | cgr3id 28545 | Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐴𝐵𝐶”〉) | ||
Theorem | cgr3simp1 28546 | Deduce segment congruence from a triangle congruence. This is a portion of the theorem that corresponding parts of congruent triangles are congruent (CPCTC), focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | ||
Theorem | cgr3simp2 28547 | Deduce segment congruence from a triangle congruence. This is a portion of CPCTC, focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | ||
Theorem | cgr3simp3 28548 | Deduce segment congruence from a triangle congruence. This is a portion of CPCTC, focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) | ||
Theorem | cgr3swap12 28549 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐵𝐴𝐶”〉 ∼ 〈“𝐸𝐷𝐹”〉) | ||
Theorem | cgr3swap23 28550 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∼ 〈“𝐷𝐹𝐸”〉) | ||
Theorem | cgr3swap13 28551 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 3-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉 ∼ 〈“𝐹𝐸𝐷”〉) | ||
Theorem | cgr3rotr 28552 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐶𝐴𝐵”〉 ∼ 〈“𝐹𝐷𝐸”〉) | ||
Theorem | cgr3rotl 28553 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉 ∼ 〈“𝐸𝐹𝐷”〉) | ||
Theorem | trgcgrcom 28554 | Commutative law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∼ 〈“𝐴𝐵𝐶”〉) | ||
Theorem | cgr3tr 28555 | Transitivity law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 𝐾 ∈ 𝑃) & ⊢ (𝜑 → 𝐿 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∼ 〈“𝐽𝐾𝐿”〉) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐽𝐾𝐿”〉) | ||
Theorem | tgbtwnxfr 28556 | A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) | ||
Theorem | tgcgr4 28557 | Two quadrilaterals to be congruent to each other if one triangle formed by their vertices is, and the additional points are equidistant too. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝑊 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉 ∼ 〈“𝑊𝑋𝑌𝑍”〉 ↔ (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑊𝑋𝑌”〉 ∧ ((𝐴 − 𝐷) = (𝑊 − 𝑍) ∧ (𝐵 − 𝐷) = (𝑋 − 𝑍) ∧ (𝐶 − 𝐷) = (𝑌 − 𝑍))))) | ||
Syntax | cismt 28558 | Declare the constant for the isometry builder. |
class Ismt | ||
Definition | df-ismt 28559* | Define the set of isometries between two structures. Definition 4.8 of [Schwabhauser] p. 36. See isismt 28560. (Contributed by Thierry Arnoux, 13-Dec-2019.) |
⊢ Ismt = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) | ||
Theorem | isismt 28560* | Property of being an isometry. Compare with isismty 37761. (Contributed by Thierry Arnoux, 13-Dec-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑃 = (Base‘𝐻) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ − = (dist‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ (𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏)))) | ||
Theorem | ismot 28561* | Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) | ||
Theorem | motcgr 28562 | Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) | ||
Theorem | idmot 28563 | The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) | ||
Theorem | motf1o 28564 | Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) ⇒ ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) | ||
Theorem | motcl 28565 | Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑃) | ||
Theorem | motco 28566 | The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) & ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐺Ismt𝐺)) | ||
Theorem | cnvmot 28567 | The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) ⇒ ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) | ||
Theorem | motplusg 28568* | The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ 𝐼 = {〈(Base‘ndx), (𝐺Ismt𝐺)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔))〉} & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) & ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) ⇒ ⊢ (𝜑 → (𝐹(+g‘𝐼)𝐻) = (𝐹 ∘ 𝐻)) | ||
Theorem | motgrp 28569* | The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ 𝐼 = {〈(Base‘ndx), (𝐺Ismt𝐺)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔))〉} ⇒ ⊢ (𝜑 → 𝐼 ∈ Grp) | ||
Theorem | motcgrg 28570* | Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ 𝐼 = {〈(Base‘ndx), (𝐺Ismt𝐺)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔))〉} & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ Word 𝑃) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝑇) ∼ 𝑇) | ||
Theorem | motcgr3 28571 | Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) & ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) & ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) & ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | ||
Theorem | tglng 28572* | Lines of a Tarski Geometry. This relates to both Definition 4.10 of [Schwabhauser] p. 36. and Definition 6.14 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiG → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) | ||
Theorem | tglnfn 28573 | Lines as functions. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I )) | ||
Theorem | tglnunirn 28574 | Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) | ||
Theorem | tglnpt 28575 | Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑃) | ||
Theorem | tglngne 28576 | It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) ⇒ ⊢ (𝜑 → 𝑋 ≠ 𝑌) | ||
Theorem | tglngval 28577* | The line going through points 𝑋 and 𝑌. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) ⇒ ⊢ (𝜑 → (𝑋𝐿𝑌) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}) | ||
Theorem | tglnssp 28578 | Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) ⇒ ⊢ (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃) | ||
Theorem | tgellng 28579 | Property of lying on the line going through points 𝑋 and 𝑌. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation 𝑍 ∈ (𝑋(LineG‘𝐺)𝑌) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) | ||
Theorem | tgcolg 28580 | We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) | ||
Theorem | btwncolg1 28581 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | ||
Theorem | btwncolg2 28582 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | ||
Theorem | btwncolg3 28583 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | ||
Theorem | colcom 28584 | Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) | ||
Theorem | colrot1 28585 | Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | ||
Theorem | colrot2 28586 | Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) | ||
Theorem | ncolcom 28587 | Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) ⇒ ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) | ||
Theorem | ncolrot1 28588 | Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) ⇒ ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | ||
Theorem | ncolrot2 28589 | Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) ⇒ ⊢ (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) | ||
Theorem | tgdim01ln 28590 | In geometries of dimension less than two, then any three points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | ||
Theorem | ncoltgdim2 28591 | If there are three non-colinear points, then the dimension is at least two. Converse of tglowdim2l 28676. (Contributed by Thierry Arnoux, 23-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) ⇒ ⊢ (𝜑 → 𝐺DimTarskiG≥2) | ||
Theorem | lnxfr 28592 | Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) ⇒ ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) | ||
Theorem | lnext 28593* | Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝐴 − 𝐵)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝑐”〉) | ||
Theorem | tgfscgr 28594 | Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) & ⊢ (𝜑 → (𝑋 − 𝑇) = (𝐴 − 𝐷)) & ⊢ (𝜑 → (𝑌 − 𝑇) = (𝐵 − 𝐷)) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) ⇒ ⊢ (𝜑 → (𝑍 − 𝑇) = (𝐶 − 𝐷)) | ||
Theorem | lncgr 28595 | Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → (𝑋 − 𝐴) = (𝑋 − 𝐵)) & ⊢ (𝜑 → (𝑌 − 𝐴) = (𝑌 − 𝐵)) ⇒ ⊢ (𝜑 → (𝑍 − 𝐴) = (𝑍 − 𝐵)) | ||
Theorem | lnid 28596 | Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) ⇒ ⊢ (𝜑 → 𝑍 = 𝐴) | ||
Theorem | tgidinside 28597 | Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) ⇒ ⊢ (𝜑 → 𝑍 = 𝐴) | ||
Theorem | tgbtwnconn1lem1 28598 | Lemma for tgbtwnconn1 28601. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐹)) & ⊢ (𝜑 → 𝐸 ∈ (𝐴𝐼𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐽)) & ⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐹) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐸 − 𝐻) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐹 − 𝐽) = (𝐵 − 𝐷)) ⇒ ⊢ (𝜑 → 𝐻 = 𝐽) | ||
Theorem | tgbtwnconn1lem2 28599 | Lemma for tgbtwnconn1 28601. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐹)) & ⊢ (𝜑 → 𝐸 ∈ (𝐴𝐼𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐽)) & ⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐹) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐸 − 𝐻) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐹 − 𝐽) = (𝐵 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 − 𝐹) = (𝐶 − 𝐷)) | ||
Theorem | tgbtwnconn1lem3 28600 | Lemma for tgbtwnconn1 28601. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐹)) & ⊢ (𝜑 → 𝐸 ∈ (𝐴𝐼𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐽)) & ⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐹) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐸 − 𝐻) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐹 − 𝐽) = (𝐵 − 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ (𝐶𝐼𝐸)) & ⊢ (𝜑 → 𝑋 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → 𝐶 ≠ 𝐸) ⇒ ⊢ (𝜑 → 𝐷 = 𝐹) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |