![]() |
Metamath
Proof Explorer Theorem List (p. 286 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mirbtwn 28501 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) β β’ (π β π΄ β ((πβπ΅)πΌπ΅)) | ||
Theorem | ismir 28502 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (π΄ β πΆ) = (π΄ β π΅)) & β’ (π β π΄ β (πΆπΌπ΅)) β β’ (π β πΆ = (πβπ΅)) | ||
Theorem | mirf 28503 | Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) β β’ (π β π:πβΆπ) | ||
Theorem | mircl 28504 | Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π β π) β β’ (π β (πβπ) β π) | ||
Theorem | mirmir 28505 | The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) β β’ (π β (πβ(πβπ΅)) = π΅) | ||
Theorem | mircom 28506 | Variation on mirmir 28505. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) & β’ (π β (πβπ΅) = πΆ) β β’ (π β (πβπΆ) = π΅) | ||
Theorem | mirreu 28507* | Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) β β’ (π β β!π β π (πβπ) = π΅) | ||
Theorem | mireq 28508 | Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (πβπ΅) = (πβπΆ)) β β’ (π β π΅ = πΆ) | ||
Theorem | mirinv 28509 | The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) β β’ (π β ((πβπ΅) = π΅ β π΄ = π΅)) | ||
Theorem | mirne 28510 | Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) & β’ (π β π΅ β π΄) β β’ (π β (πβπ΅) β π΄) | ||
Theorem | mircinv 28511 | The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) β β’ (π β (πβπ΄) = π΄) | ||
Theorem | mirf1o 28512 | The point inversion function π is a bijection. Theorem 7.11 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) β β’ (π β π:πβ1-1-ontoβπ) | ||
Theorem | miriso 28513 | The point inversion function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 7.13 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πβπ) β (πβπ)) = (π β π)) | ||
Theorem | mirbtwni 28514 | Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β (πβπ) β ((πβπ)πΌ(πβπ))) | ||
Theorem | mirbtwnb 28515 | Point inversion preserves betweenness. Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β (ππΌπ) β (πβπ) β ((πβπ)πΌ(πβπ)))) | ||
Theorem | mircgrs 28516 | Point inversion preserves congruence. Theorem 7.16 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β π) = (π β π)) β β’ (π β ((πβπ) β (πβπ)) = ((πβπ) β (πβπ))) | ||
Theorem | mirmir2 28517 | Point inversion of a point inversion through another point. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ((πβπ)βπ)) = ((πβ(πβπ))β(πβπ))) | ||
Theorem | mirmot 28518 | Point investion is a motion of the geometric space. Theorem 7.14 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ΄) & β’ (π β π΄ β π) β β’ (π β π β (πΊIsmtπΊ)) | ||
Theorem | mirln 28519 | If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ΄) & β’ (π β π· β ran πΏ) & β’ (π β π΄ β π·) & β’ (π β π΅ β π·) β β’ (π β (πβπ΅) β π·) | ||
Theorem | mirln2 28520 | If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ΄) & β’ (π β π· β ran πΏ) & β’ (π β π΄ β π) & β’ (π β π΅ β π·) & β’ (π β (πβπ΅) β π·) β β’ (π β π΄ β π·) | ||
Theorem | mirconn 28521 | Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ΄) & β’ (π β π΄ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (π΄πΌπ) β¨ π β (π΄πΌπ))) β β’ (π β π΄ β (ππΌ(πβπ))) | ||
Theorem | mirhl 28522 | If two points π and π are on the same half-line from π, the same applies to the mirror points. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ΄) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π(πΎβπ)π) β β’ (π β (πβπ)(πΎβ(πβπ))(πβπ)) | ||
Theorem | mirbtwnhl 28523 | If the center of the point inversion π΄ is between two points π and π, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ΄) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π΄ β (ππΌπ)) β β’ (π β (π(πΎβπ΄)π β (πβπ)(πΎβπ΄)π)) | ||
Theorem | mirhl2 28524 | Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ΄) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π΄ β (ππΌ(πβπ))) β β’ (π β π(πΎβπ΄)π) | ||
Theorem | mircgrextend 28525 | Link congruence over a pair of mirror points. cf tgcgrextend 28328. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ βΌ = (cgrGβπΊ) & β’ π = (πβπ΅) & β’ π = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π΄ β π΅) = (π β π)) β β’ (π β (π΄ β (πβπ΄)) = (π β (πβπ))) | ||
Theorem | mirtrcgr 28526 | Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ βΌ = (cgrGβπΊ) & β’ π = (πβπ΅) & β’ π = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΆ β π) & β’ (π β π β π) & β’ (π β π΄ β π΅) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπππββ©) β β’ (π β β¨β(πβπ΄)π΅πΆββ© βΌ β¨β(πβπ)ππββ©) | ||
Theorem | mirauto 28527 | Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ) & β’ π = (πβπ΄) & β’ π = (πβπ΅) & β’ π = (πβπΆ) & β’ (π β π β π) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β ((πβπ΄)βπ΅) = πΆ) β β’ (π β ((πβπ)βπ) = π) | ||
Theorem | miduniq 28528 | Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ((πβπ΄)βπ) = π) & β’ (π β ((πβπ΅)βπ) = π) β β’ (π β π΄ = π΅) | ||
Theorem | miduniq1 28529 | Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π β π) & β’ (π β ((πβπ΄)βπ) = ((πβπ΅)βπ)) β β’ (π β π΄ = π΅) | ||
Theorem | miduniq2 28530 | If two point inversions commute, they are identical. Theorem 7.19 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π β π) & β’ (π β ((πβπ΄)β((πβπ΅)βπ)) = ((πβπ΅)β((πβπ΄)βπ))) β β’ (π β π΄ = π΅) | ||
Theorem | colmid 28531 | Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π β π) & β’ (π β (π β (π΄πΏπ΅) β¨ π΄ = π΅)) & β’ (π β (π β π΄) = (π β π΅)) β β’ (π β (π΅ = (πβπ΄) β¨ π΄ = π΅)) | ||
Theorem | symquadlem 28532 | Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π β π) & β’ (π β Β¬ (π΄ β (π΅πΏπΆ) β¨ π΅ = πΆ)) & β’ (π β π΅ β π·) & β’ (π β (π΄ β π΅) = (πΆ β π·)) & β’ (π β (π΅ β πΆ) = (π· β π΄)) & β’ (π β (π β (π΄πΏπΆ) β¨ π΄ = πΆ)) & β’ (π β (π β (π΅πΏπ·) β¨ π΅ = π·)) β β’ (π β π΄ = (πβπΆ)) | ||
Theorem | krippenlem 28533 | Lemma for krippen 28534. We can assume krippen.7 "without loss of generality". (Contributed by Thierry Arnoux, 12-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ) & β’ π = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΆ β (π΄πΌπΈ)) & β’ (π β πΆ β (π΅πΌπΉ)) & β’ (π β (πΆ β π΄) = (πΆ β π΅)) & β’ (π β (πΆ β πΈ) = (πΆ β πΉ)) & β’ (π β π΅ = (πβπ΄)) & β’ (π β πΉ = (πβπΈ)) & β’ β€ = (β€GβπΊ) & β’ (π β (πΆ β π΄) β€ (πΆ β πΈ)) β β’ (π β πΆ β (ππΌπ)) | ||
Theorem | krippen 28534 | Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ) & β’ π = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΆ β (π΄πΌπΈ)) & β’ (π β πΆ β (π΅πΌπΉ)) & β’ (π β (πΆ β π΄) = (πΆ β π΅)) & β’ (π β (πΆ β πΈ) = (πΆ β πΉ)) & β’ (π β π΅ = (πβπ΄)) & β’ (π β πΉ = (πβπΈ)) β β’ (π β πΆ β (ππΌπ)) | ||
Theorem | midexlem 28535* | Lemma for the existence of a middle point. Lemma 7.25 of [Schwabhauser] p. 55. This proof of the existence of a midpoint requires the existence of a third point πΆ equidistant to π΄ and π΅ This condition will be removed later. Because the operation notation (π΄(midGβπΊ)π΅) for a midpoint implies its uniqueness, it cannot be used until uniqueness is proven, and until then, an equivalent mirror point notation π΅ = (πβπ΄) has to be used. See mideu 28581 for the existence and uniqueness of the midpoint. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (πβπ₯) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (πΆ β π΄) = (πΆ β π΅)) β β’ (π β βπ₯ β π π΅ = (πβπ΄)) | ||
Syntax | crag 28536 | Declare the constant for the class of right angles. |
class βG | ||
Definition | df-rag 28537* | Define the class of right angles. Definition 8.1 of [Schwabhauser] p. 57. See israg 28540. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ βG = (π β V β¦ {π€ β Word (Baseβπ) β£ ((β―βπ€) = 3 β§ ((π€β0)(distβπ)(π€β2)) = ((π€β0)(distβπ)(((pInvGβπ)β(π€β1))β(π€β2))))}) | ||
Syntax | cperpg 28538 | Declare the constant for the perpendicular relation. |
class βG | ||
Definition | df-perpg 28539* | Define the "perpendicular" relation. Definition 8.11 of [Schwabhauser] p. 59. See isperp 28555. (Contributed by Thierry Arnoux, 8-Sep-2019.) |
β’ βG = (π β V β¦ {β¨π, πβ© β£ ((π β ran (LineGβπ) β§ π β ran (LineGβπ)) β§ βπ₯ β (π β© π)βπ’ β π βπ£ β π β¨βπ’π₯π£ββ© β (βGβπ))}) | ||
Theorem | israg 28540 | Property for 3 points A, B, C to form a right angle. Definition 8.1 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) β β’ (π β (β¨βπ΄π΅πΆββ© β (βGβπΊ) β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ)))) | ||
Theorem | ragcom 28541 | Commutative rule for right angles. Theorem 8.2 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) β β’ (π β β¨βπΆπ΅π΄ββ© β (βGβπΊ)) | ||
Theorem | ragcol 28542 | The right angle property is independent of the choice of point on one side. Theorem 8.3 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β π΄ β π΅) & β’ (π β (π΄ β (π΅πΏπ·) β¨ π΅ = π·)) β β’ (π β β¨βπ·π΅πΆββ© β (βGβπΊ)) | ||
Theorem | ragmir 28543 | Right angle property is preserved by point inversion. Theorem 8.4 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) β β’ (π β β¨βπ΄π΅((πβπ΅)βπΆ)ββ© β (βGβπΊ)) | ||
Theorem | mirrag 28544 | Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ π = (πβπ·) & β’ (π β π· β π) β β’ (π β β¨β(πβπ΄)(πβπ΅)(πβπΆ)ββ© β (βGβπΊ)) | ||
Theorem | ragtrivb 28545 | Trivial right angle. Theorem 8.5 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) β β’ (π β β¨βπ΄π΅π΅ββ© β (βGβπΊ)) | ||
Theorem | ragflat2 28546 | Deduce equality from two right angles. Theorem 8.6 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β β¨βπ·π΅πΆββ© β (βGβπΊ)) & β’ (π β πΆ β (π΄πΌπ·)) β β’ (π β π΅ = πΆ) | ||
Theorem | ragflat 28547 | Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β β¨βπ΄πΆπ΅ββ© β (βGβπΊ)) β β’ (π β π΅ = πΆ) | ||
Theorem | ragtriva 28548 | Trivial right angle. Theorem 8.8 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β β¨βπ΄π΅π΄ββ© β (βGβπΊ)) β β’ (π β π΄ = π΅) | ||
Theorem | ragflat3 28549 | Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β β’ (π β (π΄ = π΅ β¨ πΆ = π΅)) | ||
Theorem | ragcgr 28550 | Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ βΌ = (cgrGβπΊ) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β β¨βπ·πΈπΉββ© β (βGβπΊ)) | ||
Theorem | motrag 28551 | Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΉ β (πΊIsmtπΊ)) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) β β’ (π β β¨β(πΉβπ΄)(πΉβπ΅)(πΉβπΆ)ββ© β (βGβπΊ)) | ||
Theorem | ragncol 28552 | Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β π΄ β π΅) & β’ (π β πΆ β π΅) β β’ (π β Β¬ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) | ||
Theorem | perpln1 28553 | Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄(βGβπΊ)π΅) β β’ (π β π΄ β ran πΏ) | ||
Theorem | perpln2 28554 | Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄(βGβπΊ)π΅) β β’ (π β π΅ β ran πΏ) | ||
Theorem | isperp 28555* | Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) β β’ (π β (π΄(βGβπΊ)π΅ β βπ₯ β (π΄ β© π΅)βπ’ β π΄ βπ£ β π΅ β¨βπ’π₯π£ββ© β (βGβπΊ))) | ||
Theorem | perpcom 28556 | The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) & β’ (π β π΄(βGβπΊ)π΅) β β’ (π β π΅(βGβπΊ)π΄) | ||
Theorem | perpneq 28557 | Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) & β’ (π β π΄(βGβπΊ)π΅) β β’ (π β π΄ β π΅) | ||
Theorem | isperp2 28558* | Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) & β’ (π β π β (π΄ β© π΅)) β β’ (π β (π΄(βGβπΊ)π΅ β βπ’ β π΄ βπ£ β π΅ β¨βπ’ππ£ββ© β (βGβπΊ))) | ||
Theorem | isperp2d 28559 | One direction of isperp2 28558. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) & β’ (π β π β (π΄ β© π΅)) & β’ (π β π β π΄) & β’ (π β π β π΅) & β’ (π β π΄(βGβπΊ)π΅) β β’ (π β β¨βπππββ© β (βGβπΊ)) | ||
Theorem | ragperp 28560 | Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) & β’ (π β π β (π΄ β© π΅)) & β’ (π β π β π΄) & β’ (π β π β π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β β¨βπππββ© β (βGβπΊ)) β β’ (π β π΄(βGβπΊ)π΅) | ||
Theorem | footexALT 28561* | Alternative version of footex 28564 which minimization requires a notably long time. (Contributed by Thierry Arnoux, 19-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β πΆ β π) & β’ (π β Β¬ πΆ β π΄) β β’ (π β βπ₯ β π΄ (πΆπΏπ₯)(βGβπΊ)π΄) | ||
Theorem | footexlem1 28562 | Lemma for footex 28564. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β πΆ β π) & β’ (π β Β¬ πΆ β π΄) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β π) & β’ (π β π΄ = (πΈπΏπΉ)) & β’ (π β πΈ β πΉ) & β’ (π β πΈ β (πΉπΌπ)) & β’ (π β (πΈ β π) = (πΈ β πΆ)) & β’ (π β πΆ = (((pInvGβπΊ)βπ )βπ)) & β’ (π β π β (πΈπΌπ)) & β’ (π β (π β π) = (π β π )) & β’ (π β π β π) & β’ (π β π β (π πΌπ)) & β’ (π β (π β π) = (π β πΈ)) & β’ (π β π β ((((pInvGβπΊ)βπ)βπ)πΌπ·)) & β’ (π β (π β π·) = (π β πΆ)) & β’ (π β π· = (((pInvGβπΊ)βπ)βπΆ)) β β’ (π β π β π΄) | ||
Theorem | footexlem2 28563 | Lemma for footex 28564. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β πΆ β π) & β’ (π β Β¬ πΆ β π΄) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β π) & β’ (π β π΄ = (πΈπΏπΉ)) & β’ (π β πΈ β πΉ) & β’ (π β πΈ β (πΉπΌπ)) & β’ (π β (πΈ β π) = (πΈ β πΆ)) & β’ (π β πΆ = (((pInvGβπΊ)βπ )βπ)) & β’ (π β π β (πΈπΌπ)) & β’ (π β (π β π) = (π β π )) & β’ (π β π β π) & β’ (π β π β (π πΌπ)) & β’ (π β (π β π) = (π β πΈ)) & β’ (π β π β ((((pInvGβπΊ)βπ)βπ)πΌπ·)) & β’ (π β (π β π·) = (π β πΆ)) & β’ (π β π· = (((pInvGβπΊ)βπ)βπΆ)) β β’ (π β (πΆπΏπ)(βGβπΊ)π΄) | ||
Theorem | footex 28564* | From a point πΆ outside of a line π΄, there exists a point π₯ on π΄ such that (πΆπΏπ₯) is perpendicular to π΄. This point is unique, see foot 28565. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β πΆ β π) & β’ (π β Β¬ πΆ β π΄) β β’ (π β βπ₯ β π΄ (πΆπΏπ₯)(βGβπΊ)π΄) | ||
Theorem | foot 28565* | From a point πΆ outside of a line π΄, there exists a unique point π₯ on π΄ such that (πΆπΏπ₯) is perpendicular to π΄. That point is called the foot from πΆ on π΄. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β πΆ β π) & β’ (π β Β¬ πΆ β π΄) β β’ (π β β!π₯ β π΄ (πΆπΏπ₯)(βGβπΊ)π΄) | ||
Theorem | footne 28566 | Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π β π΄) & β’ (π β π β π) & β’ (π β (ππΏπ)(βGβπΊ)π΄) β β’ (π β Β¬ π β π΄) | ||
Theorem | footeq 28567 | Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π) & β’ (π β (ππΏπ)(βGβπΊ)π΄) & β’ (π β (ππΏπ)(βGβπΊ)π΄) β β’ (π β π = π) | ||
Theorem | hlperpnel 28568 | A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ πΎ = (hlGβπΊ) & β’ (π β π β π΄) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π΄(βGβπΊ)(ππΏπ)) & β’ (π β π(πΎβπ)π) β β’ (π β Β¬ π β π΄) | ||
Theorem | perprag 28569 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β (π΄πΏπ΅)) & β’ (π β π· β π) & β’ (π β (π΄πΏπ΅)(βGβπΊ)(πΆπΏπ·)) β β’ (π β β¨βπ΄πΆπ·ββ© β (βGβπΊ)) | ||
Theorem | perpdragALT 28570 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π·) & β’ (π β π΅ β π·) & β’ (π β πΆ β π) & β’ (π β π·(βGβπΊ)(π΅πΏπΆ)) β β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) | ||
Theorem | perpdrag 28571 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π·) & β’ (π β π΅ β π·) & β’ (π β πΆ β π) & β’ (π β π·(βGβπΊ)(π΅πΏπΆ)) β β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) | ||
Theorem | colperp 28572 | Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (π΄πΏπ΅)(βGβπΊ)π·) & β’ (π β (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) & β’ (π β π΄ β πΆ) β β’ (π β (π΄πΏπΆ)(βGβπΊ)π·) | ||
Theorem | colperpexlem1 28573 | Lemma for colperp 28572. First part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (pInvGβπΊ) & β’ π = (πβπ΄) & β’ π = (πβπ΅) & β’ πΎ = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β (πΎβ(πβπΆ)) = (πβπΆ)) β β’ (π β β¨βπ΅π΄πββ© β (βGβπΊ)) | ||
Theorem | colperpexlem2 28574 | Lemma for colperpex 28576. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (pInvGβπΊ) & β’ π = (πβπ΄) & β’ π = (πβπ΅) & β’ πΎ = (πβπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π β π) & β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) & β’ (π β (πΎβ(πβπΆ)) = (πβπΆ)) & β’ (π β π΅ β πΆ) β β’ (π β π΄ β π) | ||
Theorem | colperpexlem3 28575* | Lemma for colperpex 28576. Case 1 of theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΄ β π΅) & β’ (π β Β¬ πΆ β (π΄πΏπ΅)) β β’ (π β βπ β π ((π΄πΏπ)(βGβπΊ)(π΄πΏπ΅) β§ βπ‘ β π ((π‘ β (π΄πΏπ΅) β¨ π΄ = π΅) β§ π‘ β (πΆπΌπ)))) | ||
Theorem | colperpex 28576* | In dimension 2 and above, on a line (π΄πΏπ΅) there is always a perpendicular π from π΄ on a given plane (here given by πΆ, in case πΆ does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΄ β π΅) & β’ (π β πΊDimTarskiGβ₯2) β β’ (π β βπ β π ((π΄πΏπ)(βGβπΊ)(π΄πΏπ΅) β§ βπ‘ β π ((π‘ β (π΄πΏπ΅) β¨ π΄ = π΅) β§ π‘ β (πΆπΌπ)))) | ||
Theorem | mideulem2 28577 | Lemma for opphllem 28578, which is itself used for mideu 28581. (Contributed by Thierry Arnoux, 19-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (pInvGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ β π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π΄πΏπ΅)(βGβπΊ)(ππΏπ΅)) & β’ (π β (π΄πΏπ΅)(βGβπΊ)(π΄πΏπ)) & β’ (π β π β (π΄πΏπ΅)) & β’ (π β π β (ππΌπ)) & β’ (π β π β π) & β’ (π β π β (π΅πΌπ)) & β’ (π β (π΄ β π) = (π΅ β π )) & β’ (π β π β π) & β’ (π β π β (ππΌπ΅)) & β’ (π β π β (π πΌπ)) & β’ (π β π β π) & β’ (π β π β (((πβπ΄)βπ)πΌπ)) & β’ (π β (π β π) = (π β π )) & β’ (π β π β π) & β’ (π β π = ((πβπ)βπ)) β β’ (π β π΅ = π) | ||
Theorem | opphllem 28578* | Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 28579 and later for opphl 28597. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (pInvGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ β π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π΄πΏπ΅)(βGβπΊ)(ππΏπ΅)) & β’ (π β (π΄πΏπ΅)(βGβπΊ)(π΄πΏπ)) & β’ (π β π β (π΄πΏπ΅)) & β’ (π β π β (ππΌπ)) & β’ (π β π β π) & β’ (π β π β (π΅πΌπ)) & β’ (π β (π΄ β π) = (π΅ β π )) β β’ (π β βπ₯ β π (π΅ = ((πβπ₯)βπ΄) β§ π = ((πβπ₯)βπ ))) | ||
Theorem | mideulem 28579* | Lemma for mideu 28581. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (pInvGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ β π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π΄πΏπ΅)(βGβπΊ)(ππΏπ΅)) & β’ (π β (π΄πΏπ΅)(βGβπΊ)(π΄πΏπ)) & β’ (π β π β (π΄πΏπ΅)) & β’ (π β π β (ππΌπ)) & β’ (π β (π΄ β π)(β€GβπΊ)(π΅ β π)) β β’ (π β βπ₯ β π π΅ = ((πβπ₯)βπ΄)) | ||
Theorem | midex 28580* | Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (pInvGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΊDimTarskiGβ₯2) β β’ (π β βπ₯ β π π΅ = ((πβπ₯)βπ΄)) | ||
Theorem | mideu 28581* | Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (pInvGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΊDimTarskiGβ₯2) β β’ (π β β!π₯ β π π΅ = ((πβπ₯)βπ΄)) | ||
Theorem | islnopp 28582* | The property for two points π΄ and π΅ to lie on the opposite sides of a set π· Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β (π΄ππ΅ β ((Β¬ π΄ β π· β§ Β¬ π΅ β π·) β§ βπ‘ β π· π‘ β (π΄πΌπ΅)))) | ||
Theorem | islnoppd 28583* | Deduce that π΄ and π΅ lie on opposite sides of line πΏ. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π·) & β’ (π β Β¬ π΄ β π·) & β’ (π β Β¬ π΅ β π·) & β’ (π β πΆ β (π΄πΌπ΅)) β β’ (π β π΄ππ΅) | ||
Theorem | oppne1 28584* | Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ππ΅) β β’ (π β Β¬ π΄ β π·) | ||
Theorem | oppne2 28585* | Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ππ΅) β β’ (π β Β¬ π΅ β π·) | ||
Theorem | oppne3 28586* | Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ππ΅) β β’ (π β π΄ β π΅) | ||
Theorem | oppcom 28587* | Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ππ΅) β β’ (π β π΅ππ΄) | ||
Theorem | opptgdim2 28588* | If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ππ΅) β β’ (π β πΊDimTarskiGβ₯2) | ||
Theorem | oppnid 28589* | The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) β β’ (π β Β¬ π΄ππ΄) | ||
Theorem | opphllem1 28590* | Lemma for opphl 28597. (Contributed by Thierry Arnoux, 20-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ π = ((pInvGβπΊ)βπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π β π·) & β’ (π β π΄ππΆ) & β’ (π β π β π·) & β’ (π β π΄ = (πβπΆ)) & β’ (π β π΄ β π ) & β’ (π β π΅ β π ) & β’ (π β π΅ β (π πΌπ΄)) β β’ (π β π΅ππΆ) | ||
Theorem | opphllem2 28591* | Lemma for opphl 28597. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ π = ((pInvGβπΊ)βπ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π β π·) & β’ (π β π΄ππΆ) & β’ (π β π β π·) & β’ (π β π΄ = (πβπΆ)) & β’ (π β π΄ β π ) & β’ (π β π΅ β π ) & β’ (π β (π΄ β (π πΌπ΅) β¨ π΅ β (π πΌπ΄))) β β’ (π β π΅ππΆ) | ||
Theorem | opphllem3 28592* | Lemma for opphl 28597: We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ πΎ = (hlGβπΊ) & β’ π = ((pInvGβπΊ)βπ) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β π β π·) & β’ (π β π β π·) & β’ (π β π β π) & β’ (π β π΄ππΆ) & β’ (π β π·(βGβπΊ)(π΄πΏπ )) & β’ (π β π·(βGβπΊ)(πΆπΏπ)) & β’ (π β π β π) & β’ (π β (π β πΆ)(β€GβπΊ)(π β π΄)) & β’ (π β π β π) & β’ (π β (πβπ ) = π) β β’ (π β (π(πΎβπ )π΄ β (πβπ)(πΎβπ)πΆ)) | ||
Theorem | opphllem4 28593* | Lemma for opphl 28597. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ πΎ = (hlGβπΊ) & β’ π = ((pInvGβπΊ)βπ) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β π β π·) & β’ (π β π β π·) & β’ (π β π β π) & β’ (π β π΄ππΆ) & β’ (π β π·(βGβπΊ)(π΄πΏπ )) & β’ (π β π·(βGβπΊ)(πΆπΏπ)) & β’ (π β π β π) & β’ (π β (π β πΆ)(β€GβπΊ)(π β π΄)) & β’ (π β π β π) & β’ (π β (πβπ ) = π) & β’ (π β π β π) & β’ (π β π(πΎβπ )π΄) & β’ (π β π(πΎβπ)πΆ) β β’ (π β πππ) | ||
Theorem | opphllem5 28594* | Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ πΎ = (hlGβπΊ) & β’ π = ((pInvGβπΊ)βπ) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β π β π·) & β’ (π β π β π·) & β’ (π β π β π) & β’ (π β π΄ππΆ) & β’ (π β π·(βGβπΊ)(π΄πΏπ )) & β’ (π β π·(βGβπΊ)(πΆπΏπ)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π(πΎβπ )π΄) & β’ (π β π(πΎβπ)πΆ) β β’ (π β πππ) | ||
Theorem | opphllem6 28595* | First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ πΎ = (hlGβπΊ) & β’ π = ((pInvGβπΊ)βπ) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β π β π·) & β’ (π β π β π·) & β’ (π β π β π) & β’ (π β π΄ππΆ) & β’ (π β π·(βGβπΊ)(π΄πΏπ )) & β’ (π β π·(βGβπΊ)(πΆπΏπ)) & β’ (π β π β π) & β’ (π β (πβπ ) = π) β β’ (π β (π(πΎβπ )π΄ β (πβπ)(πΎβπ)πΆ)) | ||
Theorem | oppperpex 28596* | Restating colperpex 28576 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π·) & β’ (π β πΆ β π) & β’ (π β Β¬ πΆ β π·) & β’ (π β πΊDimTarskiGβ₯2) β β’ (π β βπ β π ((π΄πΏπ)(βGβπΊ)π· β§ πΆππ)) | ||
Theorem | opphl 28597* | If two points π΄ and πΆ lie on opposite sides of a line π·, then any point of the half line (π π΄) also lies opposite to πΆ. Theorem 9.5 of [Schwabhauser] p. 69. (Contributed by Thierry Arnoux, 3-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} & β’ πΏ = (LineGβπΊ) & β’ (π β π· β ran πΏ) & β’ (π β πΊ β TarskiG) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΄ππΆ) & β’ (π β π β π·) & β’ (π β π΄(πΎβπ )π΅) β β’ (π β π΅ππΆ) | ||
Theorem | outpasch 28598* | Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΆ β (π΄πΌπ )) & β’ (π β π β (π΅πΌπΆ)) β β’ (π β βπ₯ β π (π₯ β (π΄πΌπ΅) β§ π β (π πΌπ₯))) | ||
Theorem | hlpasch 28599* | An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π β π) & β’ (π β π· β π) & β’ (π β π΄ β π΅) & β’ (π β πΆ(πΎβπ΅)π·) & β’ (π β π΄ β (ππΌπΆ)) β β’ (π β βπ β π (π΄(πΎβπ΅)π β§ π β (ππΌπ·))) | ||
Syntax | chpg 28600 | "Belong to the same open half-plane" relation for points in a geometry. |
class hpG |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |