| Metamath
Proof Explorer Theorem List (p. 286 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lnext 28501* | Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝐴 − 𝐵)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝑐”〉) | ||
| Theorem | tgfscgr 28502 | Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) & ⊢ (𝜑 → (𝑋 − 𝑇) = (𝐴 − 𝐷)) & ⊢ (𝜑 → (𝑌 − 𝑇) = (𝐵 − 𝐷)) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) ⇒ ⊢ (𝜑 → (𝑍 − 𝑇) = (𝐶 − 𝐷)) | ||
| Theorem | lncgr 28503 | Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → (𝑋 − 𝐴) = (𝑋 − 𝐵)) & ⊢ (𝜑 → (𝑌 − 𝐴) = (𝑌 − 𝐵)) ⇒ ⊢ (𝜑 → (𝑍 − 𝐴) = (𝑍 − 𝐵)) | ||
| Theorem | lnid 28504 | Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) & ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) ⇒ ⊢ (𝜑 → 𝑍 = 𝐴) | ||
| Theorem | tgidinside 28505 | Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) ⇒ ⊢ (𝜑 → 𝑍 = 𝐴) | ||
| Theorem | tgbtwnconn1lem1 28506 | Lemma for tgbtwnconn1 28509. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐹)) & ⊢ (𝜑 → 𝐸 ∈ (𝐴𝐼𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐽)) & ⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐹) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐸 − 𝐻) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐹 − 𝐽) = (𝐵 − 𝐷)) ⇒ ⊢ (𝜑 → 𝐻 = 𝐽) | ||
| Theorem | tgbtwnconn1lem2 28507 | Lemma for tgbtwnconn1 28509. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐹)) & ⊢ (𝜑 → 𝐸 ∈ (𝐴𝐼𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐽)) & ⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐹) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐸 − 𝐻) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐹 − 𝐽) = (𝐵 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 − 𝐹) = (𝐶 − 𝐷)) | ||
| Theorem | tgbtwnconn1lem3 28508 | Lemma for tgbtwnconn1 28509. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐹)) & ⊢ (𝜑 → 𝐸 ∈ (𝐴𝐼𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐽)) & ⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐹) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐸 − 𝐻) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐹 − 𝐽) = (𝐵 − 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ (𝐶𝐼𝐸)) & ⊢ (𝜑 → 𝑋 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → 𝐶 ≠ 𝐸) ⇒ ⊢ (𝜑 → 𝐷 = 𝐹) | ||
| Theorem | tgbtwnconn1 28509 | Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶))) | ||
| Theorem | tgbtwnconn2 28510 | Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) | ||
| Theorem | tgbtwnconn3 28511 | Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) | ||
| Theorem | tgbtwnconnln3 28512 | Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) & ⊢ 𝐿 = (LineG‘𝐺) ⇒ ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) | ||
| Theorem | tgbtwnconn22 28513 | Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐸)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐷𝐼𝐸)) | ||
| Theorem | tgbtwnconnln1 28514 | Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | ||
| Theorem | tgbtwnconnln2 28515 | Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | ||
| Syntax | cleg 28516 | Less-than relation for geometric congruences. |
| class ≤G | ||
| Definition | df-leg 28517* | Define the less-than relationship between geometric distance congruence classes. See legval 28518. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ ≤G = (𝑔 ∈ V ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))}) | ||
| Theorem | legval 28518* | Value of the less-than relationship. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) ⇒ ⊢ (𝜑 → ≤ = {〈𝑒, 𝑓〉 ∣ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))}) | ||
| Theorem | legov 28519* | Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ↔ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 − 𝐵) = (𝐶 − 𝑧)))) | ||
| Theorem | legov2 28520* | An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ↔ ∃𝑥 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐶 − 𝐷)))) | ||
| Theorem | legid 28521 | Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐵)) | ||
| Theorem | btwnleg 28522 | Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐶)) | ||
| Theorem | legtrd 28523 | Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐸 − 𝐹)) | ||
| Theorem | legtri3 28524 | Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐴 − 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | ||
| Theorem | legtrid 28525 | Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∨ (𝐶 − 𝐷) ≤ (𝐴 − 𝐵))) | ||
| Theorem | leg0 28526 | Degenerated (zero-length) segments are minimal. Proposition 5.11 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − 𝐴) ≤ (𝐶 − 𝐷)) | ||
| Theorem | legeq 28527 | Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐶 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | legbtwn 28528 | Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) & ⊢ (𝜑 → (𝐶 − 𝐴) ≤ (𝐶 − 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) | ||
| Theorem | tgcgrsub2 28529 | Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) & ⊢ (𝜑 → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸))) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | ||
| Theorem | ltgseg 28530* | The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) & ⊢ (𝜑 → Fun − ) & ⊢ (𝜑 → 𝐴 ∈ 𝐸) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) | ||
| Theorem | ltgov 28531 | Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) & ⊢ (𝜑 → Fun − ) & ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) & ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) | ||
| Theorem | legov3 28532 | An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) & ⊢ (𝜑 → Fun − ) & ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) & ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)))) | ||
| Theorem | legso 28533 | The "shorter than" relation induces an order on pairs. Remark 5.13 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) & ⊢ (𝜑 → Fun − ) & ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) & ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) ⇒ ⊢ (𝜑 → < Or 𝐸) | ||
| Syntax | chlg 28534 | Function producing the relation "belong to the same half-line". |
| class hlG | ||
| Definition | df-hlg 28535* | Define the function producting the relation "belong to the same half-line". (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| ⊢ hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))})) | ||
| Theorem | ishlg 28536 | Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, 𝐴(𝐾‘𝐶)𝐵 means that 𝐴 and 𝐵 are on the same ray with initial point 𝐶. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ((𝐾‘𝐶) “ {𝐴}). (Contributed by Thierry Arnoux, 21-Dec-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) | ||
| Theorem | hlcomb 28537 | The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ 𝐵(𝐾‘𝐶)𝐴)) | ||
| Theorem | hlcomd 28538 | The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) ⇒ ⊢ (𝜑 → 𝐵(𝐾‘𝐶)𝐴) | ||
| Theorem | hlne1 28539 | The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
| Theorem | hlne2 28540 | The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐶) | ||
| Theorem | hlln 28541 | The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | ||
| Theorem | hleqnid 28542 | The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) ⇒ ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) | ||
| Theorem | hlid 28543 | The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) | ||
| Theorem | hltr 28544 | The half-line relation is transitive. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) & ⊢ (𝜑 → 𝐵(𝐾‘𝐷)𝐶) ⇒ ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐶) | ||
| Theorem | hlbtwn 28545 | Betweenness is a sufficient condition to swap half-lines. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ (𝐶𝐼𝐵)) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐷 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ 𝐴(𝐾‘𝐶)𝐷)) | ||
| Theorem | btwnhl1 28546 | Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐴) ⇒ ⊢ (𝜑 → 𝐶(𝐾‘𝐴)𝐵) | ||
| Theorem | btwnhl2 28547 | Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐴) | ||
| Theorem | btwnhl 28548 | Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐶)) | ||
| Theorem | lnhl 28549 | Either a point 𝐶 on the line AB is on the same side as 𝐴 or on the opposite side. (Contributed by Thierry Arnoux, 21-Sep-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) ⇒ ⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐴 ∨ 𝐵 ∈ (𝐴𝐼𝐶))) | ||
| Theorem | hlcgrex 28550* | Construct a point on a half-line, at a given distance of its origin. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐷 ≠ 𝐴) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐴)𝐷 ∧ (𝐴 − 𝑥) = (𝐵 − 𝐶))) | ||
| Theorem | hlcgreulem 28551 | Lemma for hlcgreu 28552. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐷 ≠ 𝐴) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) & ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) & ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | hlcgreu 28552* | The point constructed in hlcgrex 28550 is unique. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐷 ≠ 𝐴) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐴)𝐷 ∧ (𝐴 − 𝑥) = (𝐵 − 𝐶))) | ||
| Theorem | btwnlng1 28553 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | ||
| Theorem | btwnlng2 28554 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) ⇒ ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | ||
| Theorem | btwnlng3 28555 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) ⇒ ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | ||
| Theorem | lncom 28556 | Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) ⇒ ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | ||
| Theorem | lnrot1 28557 | Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ (𝑍𝐿𝑋)) & ⊢ (𝜑 → 𝑍 ≠ 𝑋) ⇒ ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | ||
| Theorem | lnrot2 28558 | Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ (𝑌𝐿𝑍)) & ⊢ (𝜑 → 𝑌 ≠ 𝑍) ⇒ ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) | ||
| Theorem | ncolne1 28559 | Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 ≠ 𝑌) | ||
| Theorem | ncolne2 28560 | Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 28560 could be simplified out and deleted, replaced by ncolcom 28495. |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 ≠ 𝑍) | ||
| Theorem | tgisline 28561* | The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) | ||
| Theorem | tglnne 28562 | It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) ⇒ ⊢ (𝜑 → 𝑋 ≠ 𝑌) | ||
| Theorem | tglndim0 28563 | There are no lines in dimension 0. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → (♯‘𝐵) = 1) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ ran 𝐿) | ||
| Theorem | tgelrnln 28564 | The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) ⇒ ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) | ||
| Theorem | tglineeltr 28565 | Transitivity law for lines, one half of tglineelsb2 28566. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ 𝑃) & ⊢ (𝜑 → 𝑆 ∈ (𝑃𝐿𝑄)) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ (𝑃𝐿𝑆)) ⇒ ⊢ (𝜑 → 𝑅 ∈ (𝑃𝐿𝑄)) | ||
| Theorem | tglineelsb2 28566 | If 𝑆 lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ 𝑃) & ⊢ (𝜑 → 𝑆 ∈ (𝑃𝐿𝑄)) ⇒ ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆)) | ||
| Theorem | tglinerflx1 28567 | Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) | ||
| Theorem | tglinerflx2 28568 | Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) | ||
| Theorem | tglinecom 28569 | Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃)) | ||
| Theorem | tglinethru 28570 | If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = (𝑃𝐿𝑄)) | ||
| Theorem | tghilberti1 28571* | There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
| Theorem | tghilberti2 28572* | There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
| Theorem | tglinethrueu 28573* | There is a unique line going through any two distinct points. Theorem 6.19 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
| Theorem | tglnne0 28574 | A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | tglnpt2 28575* | Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ≠ 𝑦) | ||
| Theorem | tglineintmo 28576* | Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
| Theorem | tglineineq 28577 | Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | tglineneq 28578 | Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ⇒ ⊢ (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷)) | ||
| Theorem | tglineinteq 28579 | Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑋 ∈ (𝐶𝐿𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐶𝐿𝐷)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | ncolncol 28580 | Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝐷 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) | ||
| Theorem | coltr 28581 | A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) & ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | ||
| Theorem | coltr3 28582 | A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) | ||
| Theorem | colline 28583* | Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) ⇒ ⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎))) | ||
| Theorem | tglowdim2l 28584* | Reformulation of the lower dimension axiom for dimension two. There exist three non-colinear points. Theorem 6.24 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 30-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) | ||
| Theorem | tglowdim2ln 28585* | There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵)) | ||
| Syntax | cmir 28586 | Declare the constant for the point inversion function. |
| class pInvG | ||
| Definition | df-mir 28587* | Define the point inversion ("mirror") function. Definition 7.5 of [Schwabhauser] p. 49. See mirval 28589 and ismir 28593. (Contributed by Thierry Arnoux, 30-May-2019.) |
| ⊢ pInvG = (𝑔 ∈ V ↦ (𝑚 ∈ (Base‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑚(dist‘𝑔)𝑏) = (𝑚(dist‘𝑔)𝑎) ∧ 𝑚 ∈ (𝑏(Itv‘𝑔)𝑎)))))) | ||
| Theorem | mirreu3 28588* | Existential uniqueness of the mirror point. Theorem 7.8 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 ((𝑀 − 𝑏) = (𝑀 − 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴))) | ||
| Theorem | mirval 28589* | Value of the point inversion function 𝑆. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) | ||
| Theorem | mirfv 28590* | Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) | ||
| Theorem | mircgr 28591 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) | ||
| Theorem | mirbtwn 28592 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) | ||
| Theorem | ismir 28593 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) & ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) ⇒ ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) | ||
| Theorem | mirf 28594 | Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) ⇒ ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) | ||
| Theorem | mircl 28595 | Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) | ||
| Theorem | mirmir 28596 | The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) | ||
| Theorem | mircom 28597 | Variation on mirmir 28596. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) | ||
| Theorem | mirreu 28598* | Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) | ||
| Theorem | mireq 28599 | Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
| Theorem | mirinv 28600 | The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |