HomeHome Metamath Proof Explorer
Theorem List (p. 286 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30171)
  Hilbert Space Explorer  Hilbert Space Explorer
(30172-31694)
  Users' Mathboxes  Users' Mathboxes
(31695-47852)
 

Theorem List for Metamath Proof Explorer - 28501-28600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremuspgr1e 28501 A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   (πœ‘ β†’ 𝐡 ∈ 𝑉)    &   (πœ‘ β†’ 𝐢 ∈ 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜πΊ) = {⟨𝐴, {𝐡, 𝐢}⟩})    β‡’   (πœ‘ β†’ 𝐺 ∈ USPGraph)
 
Theoremusgr1e 28502 A simple graph with one edge (with additional assumption that 𝐡 β‰  𝐢 since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   (πœ‘ β†’ 𝐡 ∈ 𝑉)    &   (πœ‘ β†’ 𝐢 ∈ 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜πΊ) = {⟨𝐴, {𝐡, 𝐢}⟩})    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    β‡’   (πœ‘ β†’ 𝐺 ∈ USGraph)
 
Theoremusgr0eop 28503 The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
(𝑉 ∈ π‘Š β†’ βŸ¨π‘‰, βˆ…βŸ© ∈ USGraph)
 
Theoremuspgr1eop 28504 A simple pseudograph with (at least) two vertices and one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
(((𝑉 ∈ π‘Š ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ βŸ¨π‘‰, {⟨𝐴, {𝐡, 𝐢}⟩}⟩ ∈ USPGraph)
 
Theoremuspgr1ewop 28505 A simple pseudograph with (at least) two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
((𝑉 ∈ π‘Š ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ βŸ¨π‘‰, βŸ¨β€œ{𝐴, 𝐡}β€βŸ©βŸ© ∈ USPGraph)
 
Theoremuspgr1v1eop 28506 A simple pseudograph with (at least) one vertex and one edge (a loop). (Contributed by AV, 5-Dec-2020.)
((𝑉 ∈ π‘Š ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑉) β†’ βŸ¨π‘‰, {⟨𝐴, {𝐡}⟩}⟩ ∈ USPGraph)
 
Theoremusgr1eop 28507 A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
(((𝑉 ∈ π‘Š ∧ 𝐴 ∈ 𝑋) ∧ (𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (𝐡 β‰  𝐢 β†’ βŸ¨π‘‰, {⟨𝐴, {𝐡, 𝐢}⟩}⟩ ∈ USGraph))
 
Theoremuspgr2v1e2w 28508 A simple pseudograph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ) β†’ ⟨{𝐴, 𝐡}, βŸ¨β€œ{𝐴, 𝐡}β€βŸ©βŸ© ∈ USPGraph)
 
Theoremusgr2v1e2w 28509 A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ ∧ 𝐴 β‰  𝐡) β†’ ⟨{𝐴, 𝐡}, βŸ¨β€œ{𝐴, 𝐡}β€βŸ©βŸ© ∈ USGraph)
 
Theoremedg0usgr 28510 A class without edges is a simple graph. Since ran 𝐹 = βˆ… does not generally imply Fun 𝐹, but Fun (iEdgβ€˜πΊ) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.)
((𝐺 ∈ π‘Š ∧ (Edgβ€˜πΊ) = βˆ… ∧ Fun (iEdgβ€˜πΊ)) β†’ 𝐺 ∈ USGraph)
 
Theoremlfuhgr1v0e 28511* A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΈ = {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)}    β‡’   ((𝐺 ∈ UHGraph ∧ (β™―β€˜π‘‰) = 1 ∧ 𝐼:dom 𝐼⟢𝐸) β†’ (Edgβ€˜πΊ) = βˆ…)
 
Theoremusgr1vr 28512 A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 2-Apr-2021.)
((𝐴 ∈ 𝑋 ∧ (Vtxβ€˜πΊ) = {𝐴}) β†’ (𝐺 ∈ USGraph β†’ (iEdgβ€˜πΊ) = βˆ…))
 
Theoremusgr1v 28513 A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.)
((𝐺 ∈ π‘Š ∧ (Vtxβ€˜πΊ) = {𝐴}) β†’ (𝐺 ∈ USGraph ↔ (iEdgβ€˜πΊ) = βˆ…))
 
Theoremusgr1v0edg 28514 A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.)
((𝐺 ∈ π‘Š ∧ (Vtxβ€˜πΊ) = {𝐴} ∧ Fun (iEdgβ€˜πΊ)) β†’ (𝐺 ∈ USGraph ↔ (Edgβ€˜πΊ) = βˆ…))
 
Theoremusgrexmpldifpr 28515 Lemma for usgrexmpledg 28519: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
(({0, 1} β‰  {1, 2} ∧ {0, 1} β‰  {2, 0} ∧ {0, 1} β‰  {0, 3}) ∧ ({1, 2} β‰  {2, 0} ∧ {1, 2} β‰  {0, 3} ∧ {2, 0} β‰  {0, 3}))
 
Theoremusgrexmplef 28516* Lemma for usgrexmpl 28520. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
𝑉 = (0...4)    &   πΈ = βŸ¨β€œ{0, 1} {1, 2} {2, 0} {0, 3}β€βŸ©    β‡’   πΈ:dom 𝐸–1-1β†’{𝑒 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘’) = 2}
 
Theoremusgrexmpllem 28517 Lemma for usgrexmpl 28520. (Contributed by AV, 21-Oct-2020.)
𝑉 = (0...4)    &   πΈ = βŸ¨β€œ{0, 1} {1, 2} {2, 0} {0, 3}β€βŸ©    &   πΊ = βŸ¨π‘‰, 𝐸⟩    β‡’   ((Vtxβ€˜πΊ) = 𝑉 ∧ (iEdgβ€˜πΊ) = 𝐸)
 
Theoremusgrexmplvtx 28518 The vertices 0, 1, 2, 3, 4 of the graph 𝐺 = βŸ¨π‘‰, 𝐸⟩. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.)
𝑉 = (0...4)    &   πΈ = βŸ¨β€œ{0, 1} {1, 2} {2, 0} {0, 3}β€βŸ©    &   πΊ = βŸ¨π‘‰, 𝐸⟩    β‡’   (Vtxβ€˜πΊ) = ({0, 1, 2} βˆͺ {3, 4})
 
Theoremusgrexmpledg 28519 The edges {0, 1}, {1, 2}, {2, 0}, {0, 3} of the graph 𝐺 = βŸ¨π‘‰, 𝐸⟩. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.)
𝑉 = (0...4)    &   πΈ = βŸ¨β€œ{0, 1} {1, 2} {2, 0} {0, 3}β€βŸ©    &   πΊ = βŸ¨π‘‰, 𝐸⟩    β‡’   (Edgβ€˜πΊ) = ({{0, 1}, {1, 2}} βˆͺ {{2, 0}, {0, 3}})
 
Theoremusgrexmpl 28520 𝐺 is a simple graph of five vertices 0, 1, 2, 3, 4, with edges {0, 1}, {1, 2}, {2, 0}, {0, 3}. (Contributed by Alexander van der Vekens, 15-Aug-2017.) (Revised by AV, 21-Oct-2020.)
𝑉 = (0...4)    &   πΈ = βŸ¨β€œ{0, 1} {1, 2} {2, 0} {0, 3}β€βŸ©    &   πΊ = βŸ¨π‘‰, 𝐸⟩    β‡’   πΊ ∈ USGraph
 
Theoremgriedg0prc 28521* The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.)
π‘ˆ = {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…}    β‡’   π‘ˆ βˆ‰ V
 
Theoremgriedg0ssusgr 28522* The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.)
π‘ˆ = {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…}    β‡’   π‘ˆ βŠ† USGraph
 
Theoremusgrprc 28523 The class of simple graphs is a proper class (and therefore, because of prcssprc 5326, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.)
USGraph βˆ‰ V
 
17.2.7  Subgraphs
 
Syntaxcsubgr 28524 Extend class notation with subgraphs.
class SubGraph
 
Definitiondf-subgr 28525* Define the class of the subgraph relation. A class 𝑠 is a subgraph of a class 𝑔 (the supergraph of 𝑠) if its vertices are also vertices of 𝑔, and its edges are also edges of 𝑔, connecting vertices of 𝑠 only (see section I.1 in [Bollobas] p. 2 or section 1.1 in [Diestel] p. 4). The second condition is ensured by the requirement that the edge function of 𝑠 is a restriction of the edge function of 𝑔 having only vertices of 𝑠 in its range. Note that the domains of the edge functions of the subgraph and the supergraph should be compatible. (Contributed by AV, 16-Nov-2020.)
SubGraph = {βŸ¨π‘ , π‘”βŸ© ∣ ((Vtxβ€˜π‘ ) βŠ† (Vtxβ€˜π‘”) ∧ (iEdgβ€˜π‘ ) = ((iEdgβ€˜π‘”) β†Ύ dom (iEdgβ€˜π‘ )) ∧ (Edgβ€˜π‘ ) βŠ† 𝒫 (Vtxβ€˜π‘ ))}
 
Theoremrelsubgr 28526 The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.)
Rel SubGraph
 
Theoremsubgrv 28527 If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.)
(𝑆 SubGraph 𝐺 β†’ (𝑆 ∈ V ∧ 𝐺 ∈ V))
 
Theoremissubgr 28528 The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   π΄ = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜π‘†)    &   π΅ = (iEdgβ€˜πΊ)    &   πΈ = (Edgβ€˜π‘†)    β‡’   ((𝐺 ∈ π‘Š ∧ 𝑆 ∈ π‘ˆ) β†’ (𝑆 SubGraph 𝐺 ↔ (𝑉 βŠ† 𝐴 ∧ 𝐼 = (𝐡 β†Ύ dom 𝐼) ∧ 𝐸 βŠ† 𝒫 𝑉)))
 
Theoremissubgr2 28529 The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   π΄ = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜π‘†)    &   π΅ = (iEdgβ€˜πΊ)    &   πΈ = (Edgβ€˜π‘†)    β‡’   ((𝐺 ∈ π‘Š ∧ Fun 𝐡 ∧ 𝑆 ∈ π‘ˆ) β†’ (𝑆 SubGraph 𝐺 ↔ (𝑉 βŠ† 𝐴 ∧ 𝐼 βŠ† 𝐡 ∧ 𝐸 βŠ† 𝒫 𝑉)))
 
Theoremsubgrprop 28530 The properties of a subgraph. (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   π΄ = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜π‘†)    &   π΅ = (iEdgβ€˜πΊ)    &   πΈ = (Edgβ€˜π‘†)    β‡’   (𝑆 SubGraph 𝐺 β†’ (𝑉 βŠ† 𝐴 ∧ 𝐼 = (𝐡 β†Ύ dom 𝐼) ∧ 𝐸 βŠ† 𝒫 𝑉))
 
Theoremsubgrprop2 28531 The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   π΄ = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜π‘†)    &   π΅ = (iEdgβ€˜πΊ)    &   πΈ = (Edgβ€˜π‘†)    β‡’   (𝑆 SubGraph 𝐺 β†’ (𝑉 βŠ† 𝐴 ∧ 𝐼 βŠ† 𝐡 ∧ 𝐸 βŠ† 𝒫 𝑉))
 
Theoremuhgrissubgr 28532 The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   π΄ = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜π‘†)    &   π΅ = (iEdgβ€˜πΊ)    β‡’   ((𝐺 ∈ π‘Š ∧ Fun 𝐡 ∧ 𝑆 ∈ UHGraph) β†’ (𝑆 SubGraph 𝐺 ↔ (𝑉 βŠ† 𝐴 ∧ 𝐼 βŠ† 𝐡)))
 
Theoremsubgrprop3 28533 The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺. (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   π΄ = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜π‘†)    &   π΅ = (Edgβ€˜πΊ)    β‡’   (𝑆 SubGraph 𝐺 β†’ (𝑉 βŠ† 𝐴 ∧ 𝐸 βŠ† 𝐡))
 
Theoremegrsubgr 28534 An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.)
(((𝐺 ∈ π‘Š ∧ 𝑆 ∈ π‘ˆ) ∧ (Vtxβ€˜π‘†) βŠ† (Vtxβ€˜πΊ) ∧ (Fun (iEdgβ€˜π‘†) ∧ (Edgβ€˜π‘†) = βˆ…)) β†’ 𝑆 SubGraph 𝐺)
 
Theorem0grsubgr 28535 The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
(𝐺 ∈ π‘Š β†’ βˆ… SubGraph 𝐺)
 
Theorem0uhgrsubgr 28536 The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
((𝐺 ∈ π‘Š ∧ 𝑆 ∈ UHGraph ∧ (Vtxβ€˜π‘†) = βˆ…) β†’ 𝑆 SubGraph 𝐺)
 
Theoremuhgrsubgrself 28537 A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
(𝐺 ∈ UHGraph β†’ 𝐺 SubGraph 𝐺)
 
Theoremsubgrfun 28538 The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.)
((Fun (iEdgβ€˜πΊ) ∧ 𝑆 SubGraph 𝐺) β†’ Fun (iEdgβ€˜π‘†))
 
Theoremsubgruhgrfun 28539 The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 20-Nov-2020.)
((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) β†’ Fun (iEdgβ€˜π‘†))
 
Theoremsubgreldmiedg 28540 An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.)
((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdgβ€˜π‘†)) β†’ 𝑋 ∈ dom (iEdgβ€˜πΊ))
 
Theoremsubgruhgredgd 28541 An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020.) (Revised by AV, 21-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   πΌ = (iEdgβ€˜π‘†)    &   (πœ‘ β†’ 𝐺 ∈ UHGraph)    &   (πœ‘ β†’ 𝑆 SubGraph 𝐺)    &   (πœ‘ β†’ 𝑋 ∈ dom 𝐼)    β‡’   (πœ‘ β†’ (πΌβ€˜π‘‹) ∈ (𝒫 𝑉 βˆ– {βˆ…}))
 
Theoremsubumgredg2 28542* An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.)
𝑉 = (Vtxβ€˜π‘†)    &   πΌ = (iEdgβ€˜π‘†)    β‡’   ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) β†’ (πΌβ€˜π‘‹) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘’) = 2})
 
Theoremsubuhgr 28543 A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) β†’ 𝑆 ∈ UHGraph)
 
Theoremsubupgr 28544 A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) β†’ 𝑆 ∈ UPGraph)
 
Theoremsubumgr 28545 A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020.)
((𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺) β†’ 𝑆 ∈ UMGraph)
 
Theoremsubusgr 28546 A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 27-Nov-2020.)
((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) β†’ 𝑆 ∈ USGraph)
 
Theoremuhgrspansubgrlem 28547 Lemma for uhgrspansubgr 28548: The edges of the graph 𝑆 obtained by removing some edges of a hypergraph 𝐺 are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 28548. (Contributed by AV, 18-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝑆 ∈ π‘Š)    &   (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐸 β†Ύ 𝐴))    &   (πœ‘ β†’ 𝐺 ∈ UHGraph)    β‡’   (πœ‘ β†’ (Edgβ€˜π‘†) βŠ† 𝒫 (Vtxβ€˜π‘†))
 
Theoremuhgrspansubgr 28548 A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝑆 ∈ π‘Š)    &   (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐸 β†Ύ 𝐴))    &   (πœ‘ β†’ 𝐺 ∈ UHGraph)    β‡’   (πœ‘ β†’ 𝑆 SubGraph 𝐺)
 
Theoremuhgrspan 28549 A spanning subgraph 𝑆 of a hypergraph 𝐺 is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝑆 ∈ π‘Š)    &   (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐸 β†Ύ 𝐴))    &   (πœ‘ β†’ 𝐺 ∈ UHGraph)    β‡’   (πœ‘ β†’ 𝑆 ∈ UHGraph)
 
Theoremupgrspan 28550 A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝑆 ∈ π‘Š)    &   (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐸 β†Ύ 𝐴))    &   (πœ‘ β†’ 𝐺 ∈ UPGraph)    β‡’   (πœ‘ β†’ 𝑆 ∈ UPGraph)
 
Theoremumgrspan 28551 A spanning subgraph 𝑆 of a multigraph 𝐺 is a multigraph. (Contributed by AV, 27-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝑆 ∈ π‘Š)    &   (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐸 β†Ύ 𝐴))    &   (πœ‘ β†’ 𝐺 ∈ UMGraph)    β‡’   (πœ‘ β†’ 𝑆 ∈ UMGraph)
 
Theoremusgrspan 28552 A spanning subgraph 𝑆 of a simple graph 𝐺 is a simple graph. (Contributed by AV, 15-Oct-2020.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝑆 ∈ π‘Š)    &   (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)    &   (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐸 β†Ύ 𝐴))    &   (πœ‘ β†’ 𝐺 ∈ USGraph)    β‡’   (πœ‘ β†’ 𝑆 ∈ USGraph)
 
Theoremuhgrspanop 28553 A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ UHGraph β†’ βŸ¨π‘‰, (𝐸 β†Ύ 𝐴)⟩ ∈ UHGraph)
 
Theoremupgrspanop 28554 A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ UPGraph β†’ βŸ¨π‘‰, (𝐸 β†Ύ 𝐴)⟩ ∈ UPGraph)
 
Theoremumgrspanop 28555 A spanning subgraph of a multigraph represented by an ordered pair is a multigraph. (Contributed by AV, 27-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ UMGraph β†’ βŸ¨π‘‰, (𝐸 β†Ύ 𝐴)⟩ ∈ UMGraph)
 
Theoremusgrspanop 28556 A spanning subgraph of a simple graph represented by an ordered pair is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ USGraph β†’ βŸ¨π‘‰, (𝐸 β†Ύ 𝐴)⟩ ∈ USGraph)
 
Theoremuhgrspan1lem1 28557 Lemma 1 for uhgrspan1 28560. (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐼 ∣ 𝑁 βˆ‰ (πΌβ€˜π‘–)}    β‡’   ((𝑉 βˆ– {𝑁}) ∈ V ∧ (𝐼 β†Ύ 𝐹) ∈ V)
 
Theoremuhgrspan1lem2 28558 Lemma 2 for uhgrspan1 28560. (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐼 ∣ 𝑁 βˆ‰ (πΌβ€˜π‘–)}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), (𝐼 β†Ύ 𝐹)⟩    β‡’   (Vtxβ€˜π‘†) = (𝑉 βˆ– {𝑁})
 
Theoremuhgrspan1lem3 28559 Lemma 3 for uhgrspan1 28560. (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐼 ∣ 𝑁 βˆ‰ (πΌβ€˜π‘–)}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), (𝐼 β†Ύ 𝐹)⟩    β‡’   (iEdgβ€˜π‘†) = (𝐼 β†Ύ 𝐹)
 
Theoremuhgrspan1 28560* The induced subgraph 𝑆 of a hypergraph 𝐺 obtained by removing one vertex is actually a subgraph of 𝐺. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐼 ∣ 𝑁 βˆ‰ (πΌβ€˜π‘–)}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), (𝐼 β†Ύ 𝐹)⟩    β‡’   ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉) β†’ 𝑆 SubGraph 𝐺)
 
Theoremupgrreslem 28561* Lemma for upgrres 28563. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐸 ∣ 𝑁 βˆ‰ (πΈβ€˜π‘–)}    β‡’   ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) β†’ ran (𝐸 β†Ύ 𝐹) βŠ† {𝑝 ∈ (𝒫 (𝑉 βˆ– {𝑁}) βˆ– {βˆ…}) ∣ (β™―β€˜π‘) ≀ 2})
 
Theoremumgrreslem 28562* Lemma for umgrres 28564 and usgrres 28565. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐸 ∣ 𝑁 βˆ‰ (πΈβ€˜π‘–)}    β‡’   ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) β†’ ran (𝐸 β†Ύ 𝐹) βŠ† {𝑝 ∈ 𝒫 (𝑉 βˆ– {𝑁}) ∣ (β™―β€˜π‘) = 2})
 
Theoremupgrres 28563* A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 28560) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐸 ∣ 𝑁 βˆ‰ (πΈβ€˜π‘–)}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), (𝐸 β†Ύ 𝐹)⟩    β‡’   ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) β†’ 𝑆 ∈ UPGraph)
 
Theoremumgrres 28564* A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 28560) is a multigraph. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐸 ∣ 𝑁 βˆ‰ (πΈβ€˜π‘–)}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), (𝐸 β†Ύ 𝐹)⟩    β‡’   ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) β†’ 𝑆 ∈ UMGraph)
 
Theoremusgrres 28565* A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 28560) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (iEdgβ€˜πΊ)    &   πΉ = {𝑖 ∈ dom 𝐸 ∣ 𝑁 βˆ‰ (πΈβ€˜π‘–)}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), (𝐸 β†Ύ 𝐹)⟩    β‡’   ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) β†’ 𝑆 ∈ USGraph)
 
Theoremupgrres1lem1 28566* Lemma 1 for upgrres1 28570. (Contributed by AV, 7-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    β‡’   ((𝑉 βˆ– {𝑁}) ∈ V ∧ ( I β†Ύ 𝐹) ∈ V)
 
Theoremumgrres1lem 28567* Lemma for umgrres1 28571. (Contributed by AV, 27-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    β‡’   ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) β†’ ran ( I β†Ύ 𝐹) βŠ† {𝑝 ∈ 𝒫 (𝑉 βˆ– {𝑁}) ∣ (β™―β€˜π‘) = 2})
 
Theoremupgrres1lem2 28568* Lemma 2 for upgrres1 28570. (Contributed by AV, 7-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), ( I β†Ύ 𝐹)⟩    β‡’   (Vtxβ€˜π‘†) = (𝑉 βˆ– {𝑁})
 
Theoremupgrres1lem3 28569* Lemma 3 for upgrres1 28570. (Contributed by AV, 7-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), ( I β†Ύ 𝐹)⟩    β‡’   (iEdgβ€˜π‘†) = ( I β†Ύ 𝐹)
 
Theoremupgrres1 28570* A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 28525 since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), ( I β†Ύ 𝐹)⟩    β‡’   ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) β†’ 𝑆 ∈ UPGraph)
 
Theoremumgrres1 28571* A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 28525 since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), ( I β†Ύ 𝐹)⟩    β‡’   ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) β†’ 𝑆 ∈ UMGraph)
 
Theoremusgrres1 28572* Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 28525 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    &   π‘† = ⟨(𝑉 βˆ– {𝑁}), ( I β†Ύ 𝐹)⟩    β‡’   ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) β†’ 𝑆 ∈ USGraph)
 
17.2.8  Finite undirected simple graphs
 
Syntaxcfusgr 28573 Extend class notation with finite simple graphs.
class FinUSGraph
 
Definitiondf-fusgr 28574 Define the class of all finite undirected simple graphs without loops (called "finite simple graphs" in the following). A finite simple graph is an undirected simple graph of finite order, i.e. with a finite set of vertices. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.)
FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtxβ€˜π‘”) ∈ Fin}
 
Theoremisfusgr 28575 The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
 
Theoremfusgrvtxfi 28576 A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝐺 ∈ FinUSGraph β†’ 𝑉 ∈ Fin)
 
Theoremisfusgrf1 28577* The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ π‘Š β†’ (𝐺 ∈ FinUSGraph ↔ (𝐼:dom 𝐼–1-1β†’{π‘₯ ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘₯) = 2} ∧ 𝑉 ∈ Fin)))
 
Theoremisfusgrcl 28578 The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 9-Jan-2020.)
(𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (β™―β€˜(Vtxβ€˜πΊ)) ∈ β„•0))
 
Theoremfusgrusgr 28579 A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.)
(𝐺 ∈ FinUSGraph β†’ 𝐺 ∈ USGraph)
 
Theoremopfusgr 28580 A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.)
((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ π‘Œ) β†’ (βŸ¨π‘‰, 𝐸⟩ ∈ FinUSGraph ↔ (βŸ¨π‘‰, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
 
Theoremusgredgffibi 28581 The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020.) (Revised by AV, 22-Oct-2020.)
𝐼 = (iEdgβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (𝐺 ∈ USGraph β†’ (𝐸 ∈ Fin ↔ 𝐼 ∈ Fin))
 
Theoremfusgredgfi 28582* In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 21-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) β†’ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin)
 
Theoremusgr1v0e 28583 The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   ((𝐺 ∈ USGraph ∧ (β™―β€˜π‘‰) = 1) β†’ (β™―β€˜πΈ) = 0)
 
Theoremusgrfilem 28584* In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 9-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    &   πΉ = {𝑒 ∈ 𝐸 ∣ 𝑁 βˆ‰ 𝑒}    β‡’   ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) β†’ (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
 
Theoremfusgrfisbase 28585 Induction base for fusgrfis 28587. Main work is done in uhgr0v0e 28495. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.)
(((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ π‘Œ) ∧ βŸ¨π‘‰, 𝐸⟩ ∈ USGraph ∧ (β™―β€˜π‘‰) = 0) β†’ 𝐸 ∈ Fin)
 
Theoremfusgrfisstep 28586* Induction step in fusgrfis 28587: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.)
(((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ π‘Œ) ∧ βŸ¨π‘‰, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) β†’ (( I β†Ύ {𝑝 ∈ (Edgβ€˜βŸ¨π‘‰, 𝐸⟩) ∣ 𝑁 βˆ‰ 𝑝}) ∈ Fin β†’ 𝐸 ∈ Fin))
 
Theoremfusgrfis 28587 A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 8-Nov-2020.)
(𝐺 ∈ FinUSGraph β†’ (Edgβ€˜πΊ) ∈ Fin)
 
Theoremfusgrfupgrfs 28588 A finite simple graph is a finite pseudograph of finite size. (Contributed by AV, 27-Dec-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ FinUSGraph β†’ (𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin))
 
17.2.9  Neighbors, complete graphs and universal vertices
 
17.2.9.1  Neighbors
 
Syntaxcnbgr 28589 Extend class notation with neighbors (of a vertex in a graph).
class NeighbVtx
 
Definitiondf-nbgr 28590* Define the (open) neighborhood resp. the class of all neighbors of a vertex (in a graph), see definition in section I.1 of [Bollobas] p. 3 or definition in section 1.1 of [Diestel] p. 3. The neighborhood/neighbors of a vertex are all (other) vertices which are connected with this vertex by an edge. In contrast to a closed neighborhood, a vertex is not a neighbor of itself. This definition is applicable even for arbitrary hypergraphs.

Remark: To distinguish this definition from other definitions for neighborhoods resp. neighbors (e.g., nei in Topology, see df-nei 22602), the suffix Vtx is added to the class constant NeighbVtx. (Contributed by Alexander van der Vekens and Mario Carneiro, 7-Oct-2017.) (Revised by AV, 24-Oct-2020.)

NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtxβ€˜π‘”) ↦ {𝑛 ∈ ((Vtxβ€˜π‘”) βˆ– {𝑣}) ∣ βˆƒπ‘’ ∈ (Edgβ€˜π‘”){𝑣, 𝑛} βŠ† 𝑒})
 
Theoremnbgrprc0 28591 The set of neighbors is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 26-Oct-2020.)
(Β¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) β†’ (𝐺 NeighbVtx 𝑁) = βˆ…)
 
Theoremnbgrcl 28592 If a class 𝑋 has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021.) (Revised by AV, 12-Feb-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝑁 ∈ (𝐺 NeighbVtx 𝑋) β†’ 𝑋 ∈ 𝑉)
 
Theoremnbgrval 28593* The set of neighbors of a vertex 𝑉 in a graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2017.) (Revised by AV, 24-Oct-2020.) (Revised by AV, 21-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (𝑁 ∈ 𝑉 β†’ (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 βˆ– {𝑁}) ∣ βˆƒπ‘’ ∈ 𝐸 {𝑁, 𝑛} βŠ† 𝑒})
 
Theoremdfnbgr2 28594* Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (𝑁 ∈ 𝑉 β†’ (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 βˆ– {𝑁}) ∣ βˆƒπ‘’ ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})
 
Theoremdfnbgr3 28595* Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 28593). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    β‡’   ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) β†’ (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 βˆ– {𝑁}) ∣ βˆƒπ‘– ∈ dom 𝐼{𝑁, 𝑛} βŠ† (πΌβ€˜π‘–)})
 
Theoremnbgrnvtx0 28596 If a class 𝑋 is not a vertex of a graph 𝐺, then it has no neighbors in 𝐺. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝑋 βˆ‰ 𝑉 β†’ (𝐺 NeighbVtx 𝑋) = βˆ…)
 
Theoremnbgrel 28597* Characterization of a neighbor 𝑁 of a vertex 𝑋 in a graph 𝐺. (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 β‰  𝑋 ∧ βˆƒπ‘’ ∈ 𝐸 {𝑋, 𝑁} βŠ† 𝑒))
 
Theoremnbgrisvtx 28598 Every neighbor 𝑁 of a vertex 𝐾 is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝑁 ∈ (𝐺 NeighbVtx 𝐾) β†’ 𝑁 ∈ 𝑉)
 
Theoremnbgrssvtx 28599 The neighbors of a vertex 𝐾 in a graph form a subset of all vertices of the graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝐺 NeighbVtx 𝐾) βŠ† 𝑉
 
Theoremnbuhgr 28600* The set of neighbors of a vertex in a hypergraph. This version of nbgrval 28593 (with 𝑁 being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) β†’ (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 βˆ– {𝑁}) ∣ βˆƒπ‘’ ∈ 𝐸 {𝑁, 𝑛} βŠ† 𝑒})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47852
  Copyright terms: Public domain < Previous  Next >