MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsval Structured version   Visualization version   GIF version

Theorem fclsval 23911
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
fclsval ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Distinct variable groups:   𝑡,𝐹   𝑡,𝐽
Allowed substitution hints:   𝑋(𝑡)   𝑌(𝑡)

Proof of Theorem fclsval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
2 fvssunirn 6857 . . . . 5 (Fil‘𝑌) ⊆ ran Fil
32sseli 3933 . . . 4 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ran Fil)
43adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ran Fil)
5 filn0 23765 . . . . . 6 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ≠ ∅)
65adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ≠ ∅)
7 fvex 6839 . . . . . 6 ((cls‘𝐽)‘𝑡) ∈ V
87rgenw 3048 . . . . 5 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V
9 iinexg 5290 . . . . 5 ((𝐹 ≠ ∅ ∧ ∀𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
106, 8, 9sylancl 586 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
11 0ex 5249 . . . 4 ∅ ∈ V
12 ifcl 4524 . . . 4 (( 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V ∧ ∅ ∈ V) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
1310, 11, 12sylancl 586 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
14 unieq 4872 . . . . . . 7 (𝑗 = 𝐽 𝑗 = 𝐽)
15 fclsval.x . . . . . . 7 𝑋 = 𝐽
1614, 15eqtr4di 2782 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝑋)
17 unieq 4872 . . . . . 6 (𝑓 = 𝐹 𝑓 = 𝐹)
1816, 17eqeqan12d 2743 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → ( 𝑗 = 𝑓𝑋 = 𝐹))
19 iineq1 4962 . . . . . . 7 (𝑓 = 𝐹 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
2019adantl 481 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
21 simpll 766 . . . . . . . . 9 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → 𝑗 = 𝐽)
2221fveq2d 6830 . . . . . . . 8 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → (cls‘𝑗) = (cls‘𝐽))
2322fveq1d 6828 . . . . . . 7 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → ((cls‘𝑗)‘𝑡) = ((cls‘𝐽)‘𝑡))
2423iineq2dv 4970 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝐹 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2520, 24eqtrd 2764 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2618, 25ifbieq1d 4503 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
27 df-fcls 23844 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅))
2826, 27ovmpoga 7507 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
291, 4, 13, 28syl3anc 1373 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
30 filunibas 23784 . . . . 5 (𝐹 ∈ (Fil‘𝑌) → 𝐹 = 𝑌)
3130eqeq2d 2740 . . . 4 (𝐹 ∈ (Fil‘𝑌) → (𝑋 = 𝐹𝑋 = 𝑌))
3231adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝑋 = 𝐹𝑋 = 𝑌))
3332ifbid 4502 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
3429, 33eqtrd 2764 1 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  c0 4286  ifcif 4478   cuni 4861   ciin 4945  ran crn 5624  cfv 6486  (class class class)co 7353  Topctop 22796  clsccl 22921  Filcfil 23748   fClus cfcls 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-fbas 21276  df-fil 23749  df-fcls 23844
This theorem is referenced by:  isfcls  23912  fclscmpi  23932
  Copyright terms: Public domain W3C validator