MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsval Structured version   Visualization version   GIF version

Theorem fclsval 23503
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
fclsval ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Distinct variable groups:   𝑡,𝐹   𝑡,𝐽
Allowed substitution hints:   𝑋(𝑡)   𝑌(𝑡)

Proof of Theorem fclsval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
2 fvssunirn 6921 . . . . 5 (Fil‘𝑌) ⊆ ran Fil
32sseli 3977 . . . 4 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ran Fil)
43adantl 482 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ran Fil)
5 filn0 23357 . . . . . 6 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ≠ ∅)
65adantl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ≠ ∅)
7 fvex 6901 . . . . . 6 ((cls‘𝐽)‘𝑡) ∈ V
87rgenw 3065 . . . . 5 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V
9 iinexg 5340 . . . . 5 ((𝐹 ≠ ∅ ∧ ∀𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
106, 8, 9sylancl 586 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
11 0ex 5306 . . . 4 ∅ ∈ V
12 ifcl 4572 . . . 4 (( 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V ∧ ∅ ∈ V) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
1310, 11, 12sylancl 586 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
14 unieq 4918 . . . . . . 7 (𝑗 = 𝐽 𝑗 = 𝐽)
15 fclsval.x . . . . . . 7 𝑋 = 𝐽
1614, 15eqtr4di 2790 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝑋)
17 unieq 4918 . . . . . 6 (𝑓 = 𝐹 𝑓 = 𝐹)
1816, 17eqeqan12d 2746 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → ( 𝑗 = 𝑓𝑋 = 𝐹))
19 iineq1 5013 . . . . . . 7 (𝑓 = 𝐹 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
2019adantl 482 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
21 simpll 765 . . . . . . . . 9 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → 𝑗 = 𝐽)
2221fveq2d 6892 . . . . . . . 8 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → (cls‘𝑗) = (cls‘𝐽))
2322fveq1d 6890 . . . . . . 7 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → ((cls‘𝑗)‘𝑡) = ((cls‘𝐽)‘𝑡))
2423iineq2dv 5021 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝐹 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2520, 24eqtrd 2772 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2618, 25ifbieq1d 4551 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
27 df-fcls 23436 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅))
2826, 27ovmpoga 7558 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
291, 4, 13, 28syl3anc 1371 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
30 filunibas 23376 . . . . 5 (𝐹 ∈ (Fil‘𝑌) → 𝐹 = 𝑌)
3130eqeq2d 2743 . . . 4 (𝐹 ∈ (Fil‘𝑌) → (𝑋 = 𝐹𝑋 = 𝑌))
3231adantl 482 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝑋 = 𝐹𝑋 = 𝑌))
3332ifbid 4550 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
3429, 33eqtrd 2772 1 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  Vcvv 3474  c0 4321  ifcif 4527   cuni 4907   ciin 4997  ran crn 5676  cfv 6540  (class class class)co 7405  Topctop 22386  clsccl 22513  Filcfil 23340   fClus cfcls 23431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-fbas 20933  df-fil 23341  df-fcls 23436
This theorem is referenced by:  isfcls  23504  fclscmpi  23524
  Copyright terms: Public domain W3C validator