MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsval Structured version   Visualization version   GIF version

Theorem fclsval 23916
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
fclsval ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Distinct variable groups:   𝑡,𝐹   𝑡,𝐽
Allowed substitution hints:   𝑋(𝑡)   𝑌(𝑡)

Proof of Theorem fclsval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
2 fvssunirn 6848 . . . . 5 (Fil‘𝑌) ⊆ ran Fil
32sseli 3928 . . . 4 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ran Fil)
43adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ran Fil)
5 filn0 23770 . . . . . 6 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ≠ ∅)
65adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ≠ ∅)
7 fvex 6830 . . . . . 6 ((cls‘𝐽)‘𝑡) ∈ V
87rgenw 3049 . . . . 5 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V
9 iinexg 5284 . . . . 5 ((𝐹 ≠ ∅ ∧ ∀𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
106, 8, 9sylancl 586 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
11 0ex 5243 . . . 4 ∅ ∈ V
12 ifcl 4519 . . . 4 (( 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V ∧ ∅ ∈ V) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
1310, 11, 12sylancl 586 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
14 unieq 4868 . . . . . . 7 (𝑗 = 𝐽 𝑗 = 𝐽)
15 fclsval.x . . . . . . 7 𝑋 = 𝐽
1614, 15eqtr4di 2783 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝑋)
17 unieq 4868 . . . . . 6 (𝑓 = 𝐹 𝑓 = 𝐹)
1816, 17eqeqan12d 2744 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → ( 𝑗 = 𝑓𝑋 = 𝐹))
19 iineq1 4957 . . . . . . 7 (𝑓 = 𝐹 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
2019adantl 481 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
21 simpll 766 . . . . . . . . 9 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → 𝑗 = 𝐽)
2221fveq2d 6821 . . . . . . . 8 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → (cls‘𝑗) = (cls‘𝐽))
2322fveq1d 6819 . . . . . . 7 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → ((cls‘𝑗)‘𝑡) = ((cls‘𝐽)‘𝑡))
2423iineq2dv 4965 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝐹 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2520, 24eqtrd 2765 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2618, 25ifbieq1d 4498 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
27 df-fcls 23849 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅))
2826, 27ovmpoga 7495 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
291, 4, 13, 28syl3anc 1373 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
30 filunibas 23789 . . . . 5 (𝐹 ∈ (Fil‘𝑌) → 𝐹 = 𝑌)
3130eqeq2d 2741 . . . 4 (𝐹 ∈ (Fil‘𝑌) → (𝑋 = 𝐹𝑋 = 𝑌))
3231adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝑋 = 𝐹𝑋 = 𝑌))
3332ifbid 4497 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
3429, 33eqtrd 2765 1 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  Vcvv 3434  c0 4281  ifcif 4473   cuni 4857   ciin 4940  ran crn 5615  cfv 6477  (class class class)co 7341  Topctop 22801  clsccl 22926  Filcfil 23753   fClus cfcls 23844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-fbas 21281  df-fil 23754  df-fcls 23849
This theorem is referenced by:  isfcls  23917  fclscmpi  23937
  Copyright terms: Public domain W3C validator