MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsval Structured version   Visualization version   GIF version

Theorem fclsval 24037
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
fclsval ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Distinct variable groups:   𝑡,𝐹   𝑡,𝐽
Allowed substitution hints:   𝑋(𝑡)   𝑌(𝑡)

Proof of Theorem fclsval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
2 fvssunirn 6953 . . . . 5 (Fil‘𝑌) ⊆ ran Fil
32sseli 4004 . . . 4 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ran Fil)
43adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ran Fil)
5 filn0 23891 . . . . . 6 (𝐹 ∈ (Fil‘𝑌) → 𝐹 ≠ ∅)
65adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ≠ ∅)
7 fvex 6933 . . . . . 6 ((cls‘𝐽)‘𝑡) ∈ V
87rgenw 3071 . . . . 5 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V
9 iinexg 5366 . . . . 5 ((𝐹 ≠ ∅ ∧ ∀𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
106, 8, 9sylancl 585 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V)
11 0ex 5325 . . . 4 ∅ ∈ V
12 ifcl 4593 . . . 4 (( 𝑡𝐹 ((cls‘𝐽)‘𝑡) ∈ V ∧ ∅ ∈ V) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
1310, 11, 12sylancl 585 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V)
14 unieq 4942 . . . . . . 7 (𝑗 = 𝐽 𝑗 = 𝐽)
15 fclsval.x . . . . . . 7 𝑋 = 𝐽
1614, 15eqtr4di 2798 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝑋)
17 unieq 4942 . . . . . 6 (𝑓 = 𝐹 𝑓 = 𝐹)
1816, 17eqeqan12d 2754 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → ( 𝑗 = 𝑓𝑋 = 𝐹))
19 iineq1 5032 . . . . . . 7 (𝑓 = 𝐹 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
2019adantl 481 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝑗)‘𝑡))
21 simpll 766 . . . . . . . . 9 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → 𝑗 = 𝐽)
2221fveq2d 6924 . . . . . . . 8 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → (cls‘𝑗) = (cls‘𝐽))
2322fveq1d 6922 . . . . . . 7 (((𝑗 = 𝐽𝑓 = 𝐹) ∧ 𝑡𝐹) → ((cls‘𝑗)‘𝑡) = ((cls‘𝐽)‘𝑡))
2423iineq2dv 5040 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝐹 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2520, 24eqtrd 2780 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑡𝑓 ((cls‘𝑗)‘𝑡) = 𝑡𝐹 ((cls‘𝐽)‘𝑡))
2618, 25ifbieq1d 4572 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
27 df-fcls 23970 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑡𝑓 ((cls‘𝑗)‘𝑡), ∅))
2826, 27ovmpoga 7604 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
291, 4, 13, 28syl3anc 1371 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
30 filunibas 23910 . . . . 5 (𝐹 ∈ (Fil‘𝑌) → 𝐹 = 𝑌)
3130eqeq2d 2751 . . . 4 (𝐹 ∈ (Fil‘𝑌) → (𝑋 = 𝐹𝑋 = 𝑌))
3231adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝑋 = 𝐹𝑋 = 𝑌))
3332ifbid 4571 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = 𝐹, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
3429, 33eqtrd 2780 1 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, 𝑡𝐹 ((cls‘𝐽)‘𝑡), ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  c0 4352  ifcif 4548   cuni 4931   ciin 5016  ran crn 5701  cfv 6573  (class class class)co 7448  Topctop 22920  clsccl 23047  Filcfil 23874   fClus cfcls 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fil 23875  df-fcls 23970
This theorem is referenced by:  isfcls  24038  fclscmpi  24058
  Copyright terms: Public domain W3C validator