| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top) |
| 2 | | fvssunirn 6939 |
. . . . 5
⊢
(Fil‘𝑌)
⊆ ∪ ran Fil |
| 3 | 2 | sseli 3979 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑌) → 𝐹 ∈ ∪ ran
Fil) |
| 4 | 3 | adantl 481 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ∈ ∪ ran
Fil) |
| 5 | | filn0 23870 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑌) → 𝐹 ≠ ∅) |
| 6 | 5 | adantl 481 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → 𝐹 ≠ ∅) |
| 7 | | fvex 6919 |
. . . . . 6
⊢
((cls‘𝐽)‘𝑡) ∈ V |
| 8 | 7 | rgenw 3065 |
. . . . 5
⊢
∀𝑡 ∈
𝐹 ((cls‘𝐽)‘𝑡) ∈ V |
| 9 | | iinexg 5348 |
. . . . 5
⊢ ((𝐹 ≠ ∅ ∧
∀𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡) ∈ V) → ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡) ∈ V) |
| 10 | 6, 8, 9 | sylancl 586 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡) ∈ V) |
| 11 | | 0ex 5307 |
. . . 4
⊢ ∅
∈ V |
| 12 | | ifcl 4571 |
. . . 4
⊢
((∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡) ∈ V ∧ ∅ ∈ V) →
if(𝑋 = ∪ 𝐹,
∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V) |
| 13 | 10, 11, 12 | sylancl 586 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = ∪ 𝐹, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V) |
| 14 | | unieq 4918 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪
𝐽) |
| 15 | | fclsval.x |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
| 16 | 14, 15 | eqtr4di 2795 |
. . . . . 6
⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 17 | | unieq 4918 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ∪ 𝑓 = ∪
𝐹) |
| 18 | 16, 17 | eqeqan12d 2751 |
. . . . 5
⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (∪ 𝑗 = ∪
𝑓 ↔ 𝑋 = ∪ 𝐹)) |
| 19 | | iineq1 5009 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ∩
𝑡 ∈ 𝑓 ((cls‘𝑗)‘𝑡) = ∩ 𝑡 ∈ 𝐹 ((cls‘𝑗)‘𝑡)) |
| 20 | 19 | adantl 481 |
. . . . . 6
⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∩
𝑡 ∈ 𝑓 ((cls‘𝑗)‘𝑡) = ∩ 𝑡 ∈ 𝐹 ((cls‘𝑗)‘𝑡)) |
| 21 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) ∧ 𝑡 ∈ 𝐹) → 𝑗 = 𝐽) |
| 22 | 21 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) ∧ 𝑡 ∈ 𝐹) → (cls‘𝑗) = (cls‘𝐽)) |
| 23 | 22 | fveq1d 6908 |
. . . . . . 7
⊢ (((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) ∧ 𝑡 ∈ 𝐹) → ((cls‘𝑗)‘𝑡) = ((cls‘𝐽)‘𝑡)) |
| 24 | 23 | iineq2dv 5017 |
. . . . . 6
⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∩
𝑡 ∈ 𝐹 ((cls‘𝑗)‘𝑡) = ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡)) |
| 25 | 20, 24 | eqtrd 2777 |
. . . . 5
⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∩
𝑡 ∈ 𝑓 ((cls‘𝑗)‘𝑡) = ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡)) |
| 26 | 18, 25 | ifbieq1d 4550 |
. . . 4
⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → if(∪
𝑗 = ∪ 𝑓,
∩ 𝑡 ∈ 𝑓 ((cls‘𝑗)‘𝑡), ∅) = if(𝑋 = ∪ 𝐹, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅)) |
| 27 | | df-fcls 23949 |
. . . 4
⊢ fClus =
(𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ if(∪ 𝑗 = ∪
𝑓, ∩ 𝑡 ∈ 𝑓 ((cls‘𝑗)‘𝑡), ∅)) |
| 28 | 26, 27 | ovmpoga 7587 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ if(𝑋 = ∪ 𝐹, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅) ∈ V) → (𝐽 fClus 𝐹) = if(𝑋 = ∪ 𝐹, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅)) |
| 29 | 1, 4, 13, 28 | syl3anc 1373 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = ∪ 𝐹, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅)) |
| 30 | | filunibas 23889 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑌) → ∪ 𝐹 =
𝑌) |
| 31 | 30 | eqeq2d 2748 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑌) → (𝑋 = ∪ 𝐹 ↔ 𝑋 = 𝑌)) |
| 32 | 31 | adantl 481 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝑋 = ∪ 𝐹 ↔ 𝑋 = 𝑌)) |
| 33 | 32 | ifbid 4549 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → if(𝑋 = ∪ 𝐹, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅) = if(𝑋 = 𝑌, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅)) |
| 34 | 29, 33 | eqtrd 2777 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅)) |