MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2iun Structured version   Visualization version   GIF version

Theorem ss2iun 4974
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)

Proof of Theorem ss2iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3940 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 3066 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 rexim 3070 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦𝐶))
42, 3syl 17 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦𝐶))
5 eliun 4959 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
6 eliun 4959 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
74, 5, 63imtr4g 296 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
87ssrdv 3952 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  wrex 3053  wss 3914   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-iun 4957
This theorem is referenced by:  iuneq2  4975  abnexg  7732  oawordri  8514  omwordri  8536  oewordri  8556  oeworde  8557  r1val1  9739  cfslb2n  10221  imasaddvallem  17492  dprdss  19961  tgcmp  23288  txcmplem1  23528  txcmplem2  23529  xkococnlem  23546  alexsubALT  23938  ptcmplem3  23941  metnrmlem2  24749  uniiccvol  25481  dvfval  25798  gsumpart  32997  bnj1145  34983  bnj1136  34987  filnetlem3  36368  poimirlem32  37646  sstotbnd2  37768  equivtotbnd  37772  trclrelexplem  43700  corcltrcl  43728  cotrclrcl  43731  ovolval5lem2  46651  ovolval5lem3  46652  smflimsuplem7  46824
  Copyright terms: Public domain W3C validator