| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2iun | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ss2iun | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3940 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 2 | 1 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 3 | rexim 3070 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
| 5 | eliun 4959 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 6 | eliun 4959 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 7 | 4, 5, 6 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 8 | 7 | ssrdv 3952 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: iuneq2 4975 abnexg 7732 oawordri 8514 omwordri 8536 oewordri 8556 oeworde 8557 r1val1 9739 cfslb2n 10221 imasaddvallem 17492 dprdss 19961 tgcmp 23288 txcmplem1 23528 txcmplem2 23529 xkococnlem 23546 alexsubALT 23938 ptcmplem3 23941 metnrmlem2 24749 uniiccvol 25481 dvfval 25798 gsumpart 32997 bnj1145 34983 bnj1136 34987 filnetlem3 36368 poimirlem32 37646 sstotbnd2 37768 equivtotbnd 37772 trclrelexplem 43700 corcltrcl 43728 cotrclrcl 43731 ovolval5lem2 46651 ovolval5lem3 46652 smflimsuplem7 46824 |
| Copyright terms: Public domain | W3C validator |