| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2iun | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ss2iun | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3937 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 2 | 1 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 3 | rexim 3070 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
| 5 | eliun 4955 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 6 | eliun 4955 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 7 | 4, 5, 6 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 8 | 7 | ssrdv 3949 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: iuneq2 4971 abnexg 7712 oawordri 8491 omwordri 8513 oewordri 8533 oeworde 8534 r1val1 9715 cfslb2n 10197 imasaddvallem 17468 dprdss 19937 tgcmp 23264 txcmplem1 23504 txcmplem2 23505 xkococnlem 23522 alexsubALT 23914 ptcmplem3 23917 metnrmlem2 24725 uniiccvol 25457 dvfval 25774 gsumpart 32970 bnj1145 34956 bnj1136 34960 filnetlem3 36341 poimirlem32 37619 sstotbnd2 37741 equivtotbnd 37745 trclrelexplem 43673 corcltrcl 43701 cotrclrcl 43704 ovolval5lem2 46624 ovolval5lem3 46625 smflimsuplem7 46797 |
| Copyright terms: Public domain | W3C validator |