MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2iun Structured version   Visualization version   GIF version

Theorem ss2iun 4963
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)

Proof of Theorem ss2iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3931 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 3066 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 rexim 3070 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦𝐶))
42, 3syl 17 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦𝐶))
5 eliun 4948 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
6 eliun 4948 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
74, 5, 63imtr4g 296 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
87ssrdv 3943 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  wrex 3053  wss 3905   ciun 4944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3440  df-ss 3922  df-iun 4946
This theorem is referenced by:  iuneq2  4964  abnexg  7696  oawordri  8475  omwordri  8497  oewordri  8517  oeworde  8518  r1val1  9701  cfslb2n  10181  imasaddvallem  17452  dprdss  19929  tgcmp  23305  txcmplem1  23545  txcmplem2  23546  xkococnlem  23563  alexsubALT  23955  ptcmplem3  23958  metnrmlem2  24766  uniiccvol  25498  dvfval  25815  gsumpart  33029  bnj1145  34979  bnj1136  34983  tz9.1regs  35086  filnetlem3  36373  poimirlem32  37651  sstotbnd2  37773  equivtotbnd  37777  trclrelexplem  43704  corcltrcl  43732  cotrclrcl  43735  ovolval5lem2  46654  ovolval5lem3  46655  smflimsuplem7  46827
  Copyright terms: Public domain W3C validator