Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polvalN Structured version   Visualization version   GIF version

Theorem polvalN 39892
Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polvalN ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Distinct variable groups:   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝑃(𝑝)   𝑀(𝑝)   (𝑝)

Proof of Theorem polvalN
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 polfval.a . . . 4 𝐴 = (Atoms‘𝐾)
21fvexi 6854 . . 3 𝐴 ∈ V
32elpw2 5284 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
4 polfval.o . . . . 5 = (oc‘𝐾)
5 polfval.m . . . . 5 𝑀 = (pmap‘𝐾)
6 polfval.p . . . . 5 𝑃 = (⊥𝑃𝐾)
74, 1, 5, 6polfvalN 39891 . . . 4 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
87fveq1d 6842 . . 3 (𝐾𝐵 → (𝑃𝑋) = ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋))
9 iineq1 4969 . . . . 5 (𝑚 = 𝑋 𝑝𝑚 (𝑀‘( 𝑝)) = 𝑝𝑋 (𝑀‘( 𝑝)))
109ineq2d 4179 . . . 4 (𝑚 = 𝑋 → (𝐴 𝑝𝑚 (𝑀‘( 𝑝))) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
11 eqid 2729 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
122inex1 5267 . . . 4 (𝐴 𝑝𝑋 (𝑀‘( 𝑝))) ∈ V
1310, 11, 12fvmpt 6950 . . 3 (𝑋 ∈ 𝒫 𝐴 → ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
148, 13sylan9eq 2784 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
153, 14sylan2br 595 1 ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911  𝒫 cpw 4559   ciin 4952  cmpt 5183  cfv 6499  occoc 17204  Atomscatm 39249  pmapcpmap 39484  𝑃cpolN 39889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-polarityN 39890
This theorem is referenced by:  polval2N  39893  pol0N  39896  polcon3N  39904  polatN  39918
  Copyright terms: Public domain W3C validator