Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polvalN Structured version   Visualization version   GIF version

Theorem polvalN 39904
Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polvalN ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Distinct variable groups:   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝑃(𝑝)   𝑀(𝑝)   (𝑝)

Proof of Theorem polvalN
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 polfval.a . . . 4 𝐴 = (Atoms‘𝐾)
21fvexi 6836 . . 3 𝐴 ∈ V
32elpw2 5273 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
4 polfval.o . . . . 5 = (oc‘𝐾)
5 polfval.m . . . . 5 𝑀 = (pmap‘𝐾)
6 polfval.p . . . . 5 𝑃 = (⊥𝑃𝐾)
74, 1, 5, 6polfvalN 39903 . . . 4 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
87fveq1d 6824 . . 3 (𝐾𝐵 → (𝑃𝑋) = ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋))
9 iineq1 4959 . . . . 5 (𝑚 = 𝑋 𝑝𝑚 (𝑀‘( 𝑝)) = 𝑝𝑋 (𝑀‘( 𝑝)))
109ineq2d 4171 . . . 4 (𝑚 = 𝑋 → (𝐴 𝑝𝑚 (𝑀‘( 𝑝))) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
11 eqid 2729 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
122inex1 5256 . . . 4 (𝐴 𝑝𝑋 (𝑀‘( 𝑝))) ∈ V
1310, 11, 12fvmpt 6930 . . 3 (𝑋 ∈ 𝒫 𝐴 → ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
148, 13sylan9eq 2784 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
153, 14sylan2br 595 1 ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  wss 3903  𝒫 cpw 4551   ciin 4942  cmpt 5173  cfv 6482  occoc 17169  Atomscatm 39262  pmapcpmap 39496  𝑃cpolN 39901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-polarityN 39902
This theorem is referenced by:  polval2N  39905  pol0N  39908  polcon3N  39916  polatN  39930
  Copyright terms: Public domain W3C validator