| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polvalN | Structured version Visualization version GIF version | ||
| Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polfval.o | ⊢ ⊥ = (oc‘𝐾) |
| polfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polvalN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | 1 | fvexi 6874 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | 2 | elpw2 5291 | . 2 ⊢ (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴) |
| 4 | polfval.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 5 | polfval.m | . . . . 5 ⊢ 𝑀 = (pmap‘𝐾) | |
| 6 | polfval.p | . . . . 5 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 7 | 4, 1, 5, 6 | polfvalN 39893 | . . . 4 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
| 8 | 7 | fveq1d 6862 | . . 3 ⊢ (𝐾 ∈ 𝐵 → (𝑃‘𝑋) = ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))‘𝑋)) |
| 9 | iineq1 4975 | . . . . 5 ⊢ (𝑚 = 𝑋 → ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)) = ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝))) | |
| 10 | 9 | ineq2d 4185 | . . . 4 ⊢ (𝑚 = 𝑋 → (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| 11 | eqid 2730 | . . . 4 ⊢ (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) | |
| 12 | 2 | inex1 5274 | . . . 4 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝))) ∈ V |
| 13 | 10, 11, 12 | fvmpt 6970 | . . 3 ⊢ (𝑋 ∈ 𝒫 𝐴 → ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| 14 | 8, 13 | sylan9eq 2785 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| 15 | 3, 14 | sylan2br 595 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3915 ⊆ wss 3916 𝒫 cpw 4565 ∩ ciin 4958 ↦ cmpt 5190 ‘cfv 6513 occoc 17234 Atomscatm 39251 pmapcpmap 39486 ⊥𝑃cpolN 39891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-polarityN 39892 |
| This theorem is referenced by: polval2N 39895 pol0N 39898 polcon3N 39906 polatN 39920 |
| Copyright terms: Public domain | W3C validator |