Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polvalN Structured version   Visualization version   GIF version

Theorem polvalN 39902
Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polvalN ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Distinct variable groups:   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝑃(𝑝)   𝑀(𝑝)   (𝑝)

Proof of Theorem polvalN
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 polfval.a . . . 4 𝐴 = (Atoms‘𝐾)
21fvexi 6928 . . 3 𝐴 ∈ V
32elpw2 5343 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
4 polfval.o . . . . 5 = (oc‘𝐾)
5 polfval.m . . . . 5 𝑀 = (pmap‘𝐾)
6 polfval.p . . . . 5 𝑃 = (⊥𝑃𝐾)
74, 1, 5, 6polfvalN 39901 . . . 4 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
87fveq1d 6916 . . 3 (𝐾𝐵 → (𝑃𝑋) = ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋))
9 iineq1 5017 . . . . 5 (𝑚 = 𝑋 𝑝𝑚 (𝑀‘( 𝑝)) = 𝑝𝑋 (𝑀‘( 𝑝)))
109ineq2d 4231 . . . 4 (𝑚 = 𝑋 → (𝐴 𝑝𝑚 (𝑀‘( 𝑝))) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
11 eqid 2737 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
122inex1 5326 . . . 4 (𝐴 𝑝𝑋 (𝑀‘( 𝑝))) ∈ V
1310, 11, 12fvmpt 7023 . . 3 (𝑋 ∈ 𝒫 𝐴 → ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
148, 13sylan9eq 2797 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
153, 14sylan2br 595 1 ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3965  wss 3966  𝒫 cpw 4608   ciin 5000  cmpt 5234  cfv 6569  occoc 17315  Atomscatm 39259  pmapcpmap 39494  𝑃cpolN 39899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-polarityN 39900
This theorem is referenced by:  polval2N  39903  pol0N  39906  polcon3N  39914  polatN  39928
  Copyright terms: Public domain W3C validator