| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polvalN | Structured version Visualization version GIF version | ||
| Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polfval.o | ⊢ ⊥ = (oc‘𝐾) |
| polfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polvalN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | 1 | fvexi 6836 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | 2 | elpw2 5273 | . 2 ⊢ (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴) |
| 4 | polfval.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 5 | polfval.m | . . . . 5 ⊢ 𝑀 = (pmap‘𝐾) | |
| 6 | polfval.p | . . . . 5 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 7 | 4, 1, 5, 6 | polfvalN 39903 | . . . 4 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
| 8 | 7 | fveq1d 6824 | . . 3 ⊢ (𝐾 ∈ 𝐵 → (𝑃‘𝑋) = ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))‘𝑋)) |
| 9 | iineq1 4959 | . . . . 5 ⊢ (𝑚 = 𝑋 → ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)) = ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝))) | |
| 10 | 9 | ineq2d 4171 | . . . 4 ⊢ (𝑚 = 𝑋 → (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| 11 | eqid 2729 | . . . 4 ⊢ (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) | |
| 12 | 2 | inex1 5256 | . . . 4 ⊢ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝))) ∈ V |
| 13 | 10, 11, 12 | fvmpt 6930 | . . 3 ⊢ (𝑋 ∈ 𝒫 𝐴 → ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| 14 | 8, 13 | sylan9eq 2784 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| 15 | 3, 14 | sylan2br 595 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 𝒫 cpw 4551 ∩ ciin 4942 ↦ cmpt 5173 ‘cfv 6482 occoc 17169 Atomscatm 39262 pmapcpmap 39496 ⊥𝑃cpolN 39901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-polarityN 39902 |
| This theorem is referenced by: polval2N 39905 pol0N 39908 polcon3N 39916 polatN 39930 |
| Copyright terms: Public domain | W3C validator |