Step | Hyp | Ref
| Expression |
1 | | isclatd.k |
. 2
β’ (π β πΎ β Poset) |
2 | | eqid 2732 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
3 | | eqid 2732 |
. . . . 5
β’
(leβπΎ) =
(leβπΎ) |
4 | | eqid 2732 |
. . . . 5
β’
(lubβπΎ) =
(lubβπΎ) |
5 | | biid 260 |
. . . . 5
β’
((βπ¦ β
π‘ π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π¦(leβπΎ)π§ β π₯(leβπΎ)π§)) β (βπ¦ β π‘ π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) |
6 | 2, 3, 4, 5, 1 | lubdm 18300 |
. . . 4
β’ (π β dom (lubβπΎ) = {π‘ β π« (BaseβπΎ) β£ β!π₯ β (BaseβπΎ)(βπ¦ β π‘ π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π¦(leβπΎ)π§ β π₯(leβπΎ)π§))}) |
7 | | ssrab2 4076 |
. . . 4
β’ {π‘ β π«
(BaseβπΎ) β£
β!π₯ β
(BaseβπΎ)(βπ¦ β π‘ π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π¦(leβπΎ)π§ β π₯(leβπΎ)π§))} β π« (BaseβπΎ) |
8 | 6, 7 | eqsstrdi 4035 |
. . 3
β’ (π β dom (lubβπΎ) β π«
(BaseβπΎ)) |
9 | | elpwi 4608 |
. . . . . . 7
β’ (π β π« π΅ β π β π΅) |
10 | | isclatd.1 |
. . . . . . 7
β’ ((π β§ π β π΅) β π β dom π) |
11 | 9, 10 | sylan2 593 |
. . . . . 6
β’ ((π β§ π β π« π΅) β π β dom π) |
12 | 11 | ralrimiva 3146 |
. . . . 5
β’ (π β βπ β π« π΅π β dom π) |
13 | | dfss3 3969 |
. . . . 5
β’
(π« π΅ β
dom π β βπ β π« π΅π β dom π) |
14 | 12, 13 | sylibr 233 |
. . . 4
β’ (π β π« π΅ β dom π) |
15 | | isclatd.b |
. . . . 5
β’ (π β π΅ = (BaseβπΎ)) |
16 | 15 | pweqd 4618 |
. . . 4
β’ (π β π« π΅ = π« (BaseβπΎ)) |
17 | | isclatd.u |
. . . . 5
β’ (π β π = (lubβπΎ)) |
18 | 17 | dmeqd 5903 |
. . . 4
β’ (π β dom π = dom (lubβπΎ)) |
19 | 14, 16, 18 | 3sstr3d 4027 |
. . 3
β’ (π β π«
(BaseβπΎ) β dom
(lubβπΎ)) |
20 | 8, 19 | eqssd 3998 |
. 2
β’ (π β dom (lubβπΎ) = π« (BaseβπΎ)) |
21 | | eqid 2732 |
. . . . 5
β’
(glbβπΎ) =
(glbβπΎ) |
22 | | biid 260 |
. . . . 5
β’
((βπ¦ β
π‘ π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π§(leβπΎ)π¦ β π§(leβπΎ)π₯)) β (βπ¦ β π‘ π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π§(leβπΎ)π¦ β π§(leβπΎ)π₯))) |
23 | 2, 3, 21, 22, 1 | glbdm 18313 |
. . . 4
β’ (π β dom (glbβπΎ) = {π‘ β π« (BaseβπΎ) β£ β!π₯ β (BaseβπΎ)(βπ¦ β π‘ π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π§(leβπΎ)π¦ β π§(leβπΎ)π₯))}) |
24 | | ssrab2 4076 |
. . . 4
β’ {π‘ β π«
(BaseβπΎ) β£
β!π₯ β
(BaseβπΎ)(βπ¦ β π‘ π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π‘ π§(leβπΎ)π¦ β π§(leβπΎ)π₯))} β π« (BaseβπΎ) |
25 | 23, 24 | eqsstrdi 4035 |
. . 3
β’ (π β dom (glbβπΎ) β π«
(BaseβπΎ)) |
26 | | isclatd.2 |
. . . . . . 7
β’ ((π β§ π β π΅) β π β dom πΊ) |
27 | 9, 26 | sylan2 593 |
. . . . . 6
β’ ((π β§ π β π« π΅) β π β dom πΊ) |
28 | 27 | ralrimiva 3146 |
. . . . 5
β’ (π β βπ β π« π΅π β dom πΊ) |
29 | | dfss3 3969 |
. . . . 5
β’
(π« π΅ β
dom πΊ β βπ β π« π΅π β dom πΊ) |
30 | 28, 29 | sylibr 233 |
. . . 4
β’ (π β π« π΅ β dom πΊ) |
31 | | isclatd.g |
. . . . 5
β’ (π β πΊ = (glbβπΎ)) |
32 | 31 | dmeqd 5903 |
. . . 4
β’ (π β dom πΊ = dom (glbβπΎ)) |
33 | 30, 16, 32 | 3sstr3d 4027 |
. . 3
β’ (π β π«
(BaseβπΎ) β dom
(glbβπΎ)) |
34 | 25, 33 | eqssd 3998 |
. 2
β’ (π β dom (glbβπΎ) = π« (BaseβπΎ)) |
35 | 2, 4, 21 | isclat 18449 |
. . 3
β’ (πΎ β CLat β (πΎ β Poset β§ (dom
(lubβπΎ) = π«
(BaseβπΎ) β§ dom
(glbβπΎ) = π«
(BaseβπΎ)))) |
36 | 35 | biimpri 227 |
. 2
β’ ((πΎ β Poset β§ (dom
(lubβπΎ) = π«
(BaseβπΎ) β§ dom
(glbβπΎ) = π«
(BaseβπΎ))) β
πΎ β
CLat) |
37 | 1, 20, 34, 36 | syl12anc 835 |
1
β’ (π β πΎ β CLat) |