Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isclatd Structured version   Visualization version   GIF version

Theorem isclatd 48655
Description: The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
isclatd.b (𝜑𝐵 = (Base‘𝐾))
isclatd.u (𝜑𝑈 = (lub‘𝐾))
isclatd.g (𝜑𝐺 = (glb‘𝐾))
isclatd.k (𝜑𝐾 ∈ Poset)
isclatd.1 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)
isclatd.2 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)
Assertion
Ref Expression
isclatd (𝜑𝐾 ∈ CLat)
Distinct variable groups:   𝐵,𝑠   𝐺,𝑠   𝑈,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem isclatd
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isclatd.k . 2 (𝜑𝐾 ∈ Poset)
2 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 eqid 2740 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
5 biid 261 . . . . 5 ((∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
62, 3, 4, 5, 1lubdm 18421 . . . 4 (𝜑 → dom (lub‘𝐾) = {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))})
7 ssrab2 4103 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))} ⊆ 𝒫 (Base‘𝐾)
86, 7eqsstrdi 4063 . . 3 (𝜑 → dom (lub‘𝐾) ⊆ 𝒫 (Base‘𝐾))
9 elpwi 4629 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
10 isclatd.1 . . . . . . 7 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)
119, 10sylan2 592 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ dom 𝑈)
1211ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝑈)
13 dfss3 3997 . . . . 5 (𝒫 𝐵 ⊆ dom 𝑈 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝑈)
1412, 13sylibr 234 . . . 4 (𝜑 → 𝒫 𝐵 ⊆ dom 𝑈)
15 isclatd.b . . . . 5 (𝜑𝐵 = (Base‘𝐾))
1615pweqd 4639 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾))
17 isclatd.u . . . . 5 (𝜑𝑈 = (lub‘𝐾))
1817dmeqd 5930 . . . 4 (𝜑 → dom 𝑈 = dom (lub‘𝐾))
1914, 16, 183sstr3d 4055 . . 3 (𝜑 → 𝒫 (Base‘𝐾) ⊆ dom (lub‘𝐾))
208, 19eqssd 4026 . 2 (𝜑 → dom (lub‘𝐾) = 𝒫 (Base‘𝐾))
21 eqid 2740 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
22 biid 261 . . . . 5 ((∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
232, 3, 21, 22, 1glbdm 18434 . . . 4 (𝜑 → dom (glb‘𝐾) = {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})
24 ssrab2 4103 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))} ⊆ 𝒫 (Base‘𝐾)
2523, 24eqsstrdi 4063 . . 3 (𝜑 → dom (glb‘𝐾) ⊆ 𝒫 (Base‘𝐾))
26 isclatd.2 . . . . . . 7 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)
279, 26sylan2 592 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ dom 𝐺)
2827ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝐺)
29 dfss3 3997 . . . . 5 (𝒫 𝐵 ⊆ dom 𝐺 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝐺)
3028, 29sylibr 234 . . . 4 (𝜑 → 𝒫 𝐵 ⊆ dom 𝐺)
31 isclatd.g . . . . 5 (𝜑𝐺 = (glb‘𝐾))
3231dmeqd 5930 . . . 4 (𝜑 → dom 𝐺 = dom (glb‘𝐾))
3330, 16, 323sstr3d 4055 . . 3 (𝜑 → 𝒫 (Base‘𝐾) ⊆ dom (glb‘𝐾))
3425, 33eqssd 4026 . 2 (𝜑 → dom (glb‘𝐾) = 𝒫 (Base‘𝐾))
352, 4, 21isclat 18570 . . 3 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))))
3635biimpri 228 . 2 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))) → 𝐾 ∈ CLat)
371, 20, 34, 36syl12anc 836 1 (𝜑𝐾 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  {crab 3443  wss 3976  𝒫 cpw 4622   class class class wbr 5166  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  lubclub 18379  glbcglb 18380  CLatccla 18568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-lub 18416  df-glb 18417  df-clat 18569
This theorem is referenced by:  mreclat  48669  topclat  48670
  Copyright terms: Public domain W3C validator