Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isclatd Structured version   Visualization version   GIF version

Theorem isclatd 46157
Description: The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
isclatd.b (𝜑𝐵 = (Base‘𝐾))
isclatd.u (𝜑𝑈 = (lub‘𝐾))
isclatd.g (𝜑𝐺 = (glb‘𝐾))
isclatd.k (𝜑𝐾 ∈ Poset)
isclatd.1 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)
isclatd.2 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)
Assertion
Ref Expression
isclatd (𝜑𝐾 ∈ CLat)
Distinct variable groups:   𝐵,𝑠   𝐺,𝑠   𝑈,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem isclatd
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isclatd.k . 2 (𝜑𝐾 ∈ Poset)
2 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 eqid 2738 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
5 biid 260 . . . . 5 ((∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
62, 3, 4, 5, 1lubdm 17984 . . . 4 (𝜑 → dom (lub‘𝐾) = {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))})
7 ssrab2 4009 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))} ⊆ 𝒫 (Base‘𝐾)
86, 7eqsstrdi 3971 . . 3 (𝜑 → dom (lub‘𝐾) ⊆ 𝒫 (Base‘𝐾))
9 elpwi 4539 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
10 isclatd.1 . . . . . . 7 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)
119, 10sylan2 592 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ dom 𝑈)
1211ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝑈)
13 dfss3 3905 . . . . 5 (𝒫 𝐵 ⊆ dom 𝑈 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝑈)
1412, 13sylibr 233 . . . 4 (𝜑 → 𝒫 𝐵 ⊆ dom 𝑈)
15 isclatd.b . . . . 5 (𝜑𝐵 = (Base‘𝐾))
1615pweqd 4549 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾))
17 isclatd.u . . . . 5 (𝜑𝑈 = (lub‘𝐾))
1817dmeqd 5803 . . . 4 (𝜑 → dom 𝑈 = dom (lub‘𝐾))
1914, 16, 183sstr3d 3963 . . 3 (𝜑 → 𝒫 (Base‘𝐾) ⊆ dom (lub‘𝐾))
208, 19eqssd 3934 . 2 (𝜑 → dom (lub‘𝐾) = 𝒫 (Base‘𝐾))
21 eqid 2738 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
22 biid 260 . . . . 5 ((∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
232, 3, 21, 22, 1glbdm 17997 . . . 4 (𝜑 → dom (glb‘𝐾) = {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})
24 ssrab2 4009 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))} ⊆ 𝒫 (Base‘𝐾)
2523, 24eqsstrdi 3971 . . 3 (𝜑 → dom (glb‘𝐾) ⊆ 𝒫 (Base‘𝐾))
26 isclatd.2 . . . . . . 7 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)
279, 26sylan2 592 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ dom 𝐺)
2827ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝐺)
29 dfss3 3905 . . . . 5 (𝒫 𝐵 ⊆ dom 𝐺 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝐺)
3028, 29sylibr 233 . . . 4 (𝜑 → 𝒫 𝐵 ⊆ dom 𝐺)
31 isclatd.g . . . . 5 (𝜑𝐺 = (glb‘𝐾))
3231dmeqd 5803 . . . 4 (𝜑 → dom 𝐺 = dom (glb‘𝐾))
3330, 16, 323sstr3d 3963 . . 3 (𝜑 → 𝒫 (Base‘𝐾) ⊆ dom (glb‘𝐾))
3425, 33eqssd 3934 . 2 (𝜑 → dom (glb‘𝐾) = 𝒫 (Base‘𝐾))
352, 4, 21isclat 18133 . . 3 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))))
3635biimpri 227 . 2 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))) → 𝐾 ∈ CLat)
371, 20, 34, 36syl12anc 833 1 (𝜑𝐾 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  ∃!wreu 3065  {crab 3067  wss 3883  𝒫 cpw 4530   class class class wbr 5070  dom cdm 5580  cfv 6418  Basecbs 16840  lecple 16895  Posetcpo 17940  lubclub 17942  glbcglb 17943  CLatccla 18131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-lub 17979  df-glb 17980  df-clat 18132
This theorem is referenced by:  mreclat  46171  topclat  46172
  Copyright terms: Public domain W3C validator