Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isclatd Structured version   Visualization version   GIF version

Theorem isclatd 47561
Description: The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
isclatd.b (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
isclatd.u (πœ‘ β†’ π‘ˆ = (lubβ€˜πΎ))
isclatd.g (πœ‘ β†’ 𝐺 = (glbβ€˜πΎ))
isclatd.k (πœ‘ β†’ 𝐾 ∈ Poset)
isclatd.1 ((πœ‘ ∧ 𝑠 βŠ† 𝐡) β†’ 𝑠 ∈ dom π‘ˆ)
isclatd.2 ((πœ‘ ∧ 𝑠 βŠ† 𝐡) β†’ 𝑠 ∈ dom 𝐺)
Assertion
Ref Expression
isclatd (πœ‘ β†’ 𝐾 ∈ CLat)
Distinct variable groups:   𝐡,𝑠   𝐺,𝑠   π‘ˆ,𝑠   πœ‘,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem isclatd
Dummy variables 𝑑 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isclatd.k . 2 (πœ‘ β†’ 𝐾 ∈ Poset)
2 eqid 2732 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3 eqid 2732 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
4 eqid 2732 . . . . 5 (lubβ€˜πΎ) = (lubβ€˜πΎ)
5 biid 260 . . . . 5 ((βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
62, 3, 4, 5, 1lubdm 18300 . . . 4 (πœ‘ β†’ dom (lubβ€˜πΎ) = {𝑑 ∈ 𝒫 (Baseβ€˜πΎ) ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))})
7 ssrab2 4076 . . . 4 {𝑑 ∈ 𝒫 (Baseβ€˜πΎ) ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))} βŠ† 𝒫 (Baseβ€˜πΎ)
86, 7eqsstrdi 4035 . . 3 (πœ‘ β†’ dom (lubβ€˜πΎ) βŠ† 𝒫 (Baseβ€˜πΎ))
9 elpwi 4608 . . . . . . 7 (𝑠 ∈ 𝒫 𝐡 β†’ 𝑠 βŠ† 𝐡)
10 isclatd.1 . . . . . . 7 ((πœ‘ ∧ 𝑠 βŠ† 𝐡) β†’ 𝑠 ∈ dom π‘ˆ)
119, 10sylan2 593 . . . . . 6 ((πœ‘ ∧ 𝑠 ∈ 𝒫 𝐡) β†’ 𝑠 ∈ dom π‘ˆ)
1211ralrimiva 3146 . . . . 5 (πœ‘ β†’ βˆ€π‘  ∈ 𝒫 𝐡𝑠 ∈ dom π‘ˆ)
13 dfss3 3969 . . . . 5 (𝒫 𝐡 βŠ† dom π‘ˆ ↔ βˆ€π‘  ∈ 𝒫 𝐡𝑠 ∈ dom π‘ˆ)
1412, 13sylibr 233 . . . 4 (πœ‘ β†’ 𝒫 𝐡 βŠ† dom π‘ˆ)
15 isclatd.b . . . . 5 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
1615pweqd 4618 . . . 4 (πœ‘ β†’ 𝒫 𝐡 = 𝒫 (Baseβ€˜πΎ))
17 isclatd.u . . . . 5 (πœ‘ β†’ π‘ˆ = (lubβ€˜πΎ))
1817dmeqd 5903 . . . 4 (πœ‘ β†’ dom π‘ˆ = dom (lubβ€˜πΎ))
1914, 16, 183sstr3d 4027 . . 3 (πœ‘ β†’ 𝒫 (Baseβ€˜πΎ) βŠ† dom (lubβ€˜πΎ))
208, 19eqssd 3998 . 2 (πœ‘ β†’ dom (lubβ€˜πΎ) = 𝒫 (Baseβ€˜πΎ))
21 eqid 2732 . . . . 5 (glbβ€˜πΎ) = (glbβ€˜πΎ)
22 biid 260 . . . . 5 ((βˆ€π‘¦ ∈ 𝑑 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)) ↔ (βˆ€π‘¦ ∈ 𝑑 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)))
232, 3, 21, 22, 1glbdm 18313 . . . 4 (πœ‘ β†’ dom (glbβ€˜πΎ) = {𝑑 ∈ 𝒫 (Baseβ€˜πΎ) ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯))})
24 ssrab2 4076 . . . 4 {𝑑 ∈ 𝒫 (Baseβ€˜πΎ) ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑑 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯))} βŠ† 𝒫 (Baseβ€˜πΎ)
2523, 24eqsstrdi 4035 . . 3 (πœ‘ β†’ dom (glbβ€˜πΎ) βŠ† 𝒫 (Baseβ€˜πΎ))
26 isclatd.2 . . . . . . 7 ((πœ‘ ∧ 𝑠 βŠ† 𝐡) β†’ 𝑠 ∈ dom 𝐺)
279, 26sylan2 593 . . . . . 6 ((πœ‘ ∧ 𝑠 ∈ 𝒫 𝐡) β†’ 𝑠 ∈ dom 𝐺)
2827ralrimiva 3146 . . . . 5 (πœ‘ β†’ βˆ€π‘  ∈ 𝒫 𝐡𝑠 ∈ dom 𝐺)
29 dfss3 3969 . . . . 5 (𝒫 𝐡 βŠ† dom 𝐺 ↔ βˆ€π‘  ∈ 𝒫 𝐡𝑠 ∈ dom 𝐺)
3028, 29sylibr 233 . . . 4 (πœ‘ β†’ 𝒫 𝐡 βŠ† dom 𝐺)
31 isclatd.g . . . . 5 (πœ‘ β†’ 𝐺 = (glbβ€˜πΎ))
3231dmeqd 5903 . . . 4 (πœ‘ β†’ dom 𝐺 = dom (glbβ€˜πΎ))
3330, 16, 323sstr3d 4027 . . 3 (πœ‘ β†’ 𝒫 (Baseβ€˜πΎ) βŠ† dom (glbβ€˜πΎ))
3425, 33eqssd 3998 . 2 (πœ‘ β†’ dom (glbβ€˜πΎ) = 𝒫 (Baseβ€˜πΎ))
352, 4, 21isclat 18449 . . 3 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lubβ€˜πΎ) = 𝒫 (Baseβ€˜πΎ) ∧ dom (glbβ€˜πΎ) = 𝒫 (Baseβ€˜πΎ))))
3635biimpri 227 . 2 ((𝐾 ∈ Poset ∧ (dom (lubβ€˜πΎ) = 𝒫 (Baseβ€˜πΎ) ∧ dom (glbβ€˜πΎ) = 𝒫 (Baseβ€˜πΎ))) β†’ 𝐾 ∈ CLat)
371, 20, 34, 36syl12anc 835 1 (πœ‘ β†’ 𝐾 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒ!wreu 3374  {crab 3432   βŠ† wss 3947  π’« cpw 4601   class class class wbr 5147  dom cdm 5675  β€˜cfv 6540  Basecbs 17140  lecple 17200  Posetcpo 18256  lubclub 18258  glbcglb 18259  CLatccla 18447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-lub 18295  df-glb 18296  df-clat 18448
This theorem is referenced by:  mreclat  47575  topclat  47576
  Copyright terms: Public domain W3C validator