Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isclatd Structured version   Visualization version   GIF version

Theorem isclatd 49107
Description: The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
isclatd.b (𝜑𝐵 = (Base‘𝐾))
isclatd.u (𝜑𝑈 = (lub‘𝐾))
isclatd.g (𝜑𝐺 = (glb‘𝐾))
isclatd.k (𝜑𝐾 ∈ Poset)
isclatd.1 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)
isclatd.2 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)
Assertion
Ref Expression
isclatd (𝜑𝐾 ∈ CLat)
Distinct variable groups:   𝐵,𝑠   𝐺,𝑠   𝑈,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem isclatd
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isclatd.k . 2 (𝜑𝐾 ∈ Poset)
2 eqid 2733 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2733 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 eqid 2733 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
5 biid 261 . . . . 5 ((∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
62, 3, 4, 5, 1lubdm 18257 . . . 4 (𝜑 → dom (lub‘𝐾) = {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))})
7 ssrab2 4029 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))} ⊆ 𝒫 (Base‘𝐾)
86, 7eqsstrdi 3975 . . 3 (𝜑 → dom (lub‘𝐾) ⊆ 𝒫 (Base‘𝐾))
9 elpwi 4556 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
10 isclatd.1 . . . . . . 7 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)
119, 10sylan2 593 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ dom 𝑈)
1211ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝑈)
13 dfss3 3919 . . . . 5 (𝒫 𝐵 ⊆ dom 𝑈 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝑈)
1412, 13sylibr 234 . . . 4 (𝜑 → 𝒫 𝐵 ⊆ dom 𝑈)
15 isclatd.b . . . . 5 (𝜑𝐵 = (Base‘𝐾))
1615pweqd 4566 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾))
17 isclatd.u . . . . 5 (𝜑𝑈 = (lub‘𝐾))
1817dmeqd 5849 . . . 4 (𝜑 → dom 𝑈 = dom (lub‘𝐾))
1914, 16, 183sstr3d 3985 . . 3 (𝜑 → 𝒫 (Base‘𝐾) ⊆ dom (lub‘𝐾))
208, 19eqssd 3948 . 2 (𝜑 → dom (lub‘𝐾) = 𝒫 (Base‘𝐾))
21 eqid 2733 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
22 biid 261 . . . . 5 ((∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
232, 3, 21, 22, 1glbdm 18270 . . . 4 (𝜑 → dom (glb‘𝐾) = {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})
24 ssrab2 4029 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝐾) ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑡 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))} ⊆ 𝒫 (Base‘𝐾)
2523, 24eqsstrdi 3975 . . 3 (𝜑 → dom (glb‘𝐾) ⊆ 𝒫 (Base‘𝐾))
26 isclatd.2 . . . . . . 7 ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)
279, 26sylan2 593 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ dom 𝐺)
2827ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝐺)
29 dfss3 3919 . . . . 5 (𝒫 𝐵 ⊆ dom 𝐺 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ∈ dom 𝐺)
3028, 29sylibr 234 . . . 4 (𝜑 → 𝒫 𝐵 ⊆ dom 𝐺)
31 isclatd.g . . . . 5 (𝜑𝐺 = (glb‘𝐾))
3231dmeqd 5849 . . . 4 (𝜑 → dom 𝐺 = dom (glb‘𝐾))
3330, 16, 323sstr3d 3985 . . 3 (𝜑 → 𝒫 (Base‘𝐾) ⊆ dom (glb‘𝐾))
3425, 33eqssd 3948 . 2 (𝜑 → dom (glb‘𝐾) = 𝒫 (Base‘𝐾))
352, 4, 21isclat 18408 . . 3 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))))
3635biimpri 228 . 2 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))) → 𝐾 ∈ CLat)
371, 20, 34, 36syl12anc 836 1 (𝜑𝐾 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345  {crab 3396  wss 3898  𝒫 cpw 4549   class class class wbr 5093  dom cdm 5619  cfv 6486  Basecbs 17122  lecple 17170  Posetcpo 18215  lubclub 18217  glbcglb 18218  CLatccla 18406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-lub 18252  df-glb 18253  df-clat 18407
This theorem is referenced by:  mreclat  49121  topclat  49122
  Copyright terms: Public domain W3C validator