![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub | Structured version Visualization version GIF version |
Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18472 is in quantified form. mrelatlub 18620 could potentially be shortened using this. See mrelatlubALT 48784. (Contributed by Zhi Wang, 28-Sep-2024.) |
Ref | Expression |
---|---|
ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
ipolub.t | ⊢ (𝜑 → 𝑇 ∈ 𝐹) |
Ref | Expression |
---|---|
ipolub | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
2 | ipolub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | ipolub.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
4 | 3 | ipobas 18589 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
6 | ipolub.u | . 2 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
7 | 3 | ipopos 18594 | . . 3 ⊢ 𝐼 ∈ Poset |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐼 ∈ Poset) |
9 | ipolub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
10 | ipolub.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐹) | |
11 | breq1 5151 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑇 ↔ 𝑦(le‘𝐼)𝑇)) | |
12 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
13 | intubeu 48773 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝐹 ∧ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
15 | 10, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
16 | 3, 2, 9, 1 | ipolublem 48775 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
17 | 10, 16 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣))) |
19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
22 | 11, 20, 21 | rspcdva 3623 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦(le‘𝐼)𝑇) |
23 | breq2 5152 | . . . . . . 7 ⊢ (𝑣 = 𝑧 → (𝑤(le‘𝐼)𝑣 ↔ 𝑤(le‘𝐼)𝑧)) | |
24 | 23 | ralbidv 3176 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧)) |
25 | breq1 5151 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑧 ↔ 𝑦(le‘𝐼)𝑧)) | |
26 | 25 | cbvralvw 3235 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) |
27 | 24, 26 | bitrdi 287 | . . . . 5 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧)) |
28 | breq2 5152 | . . . . 5 ⊢ (𝑣 = 𝑧 → (𝑇(le‘𝐼)𝑣 ↔ 𝑇(le‘𝐼)𝑧)) | |
29 | 27, 28 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝑧 → ((∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧))) |
30 | 18 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → 𝑧 ∈ 𝐹) | |
33 | 29, 31, 32 | rspcdva 3623 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧)) |
34 | 33 | 3impia 1116 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹 ∧ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) → 𝑇(le‘𝐼)𝑧) |
35 | 1, 5, 6, 8, 9, 10, 22, 34 | poslubdg 18472 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ⊆ wss 3963 ∪ cuni 4912 ∩ cint 4951 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 Posetcpo 18365 lubclub 18367 toInccipo 18585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-tset 17317 df-ple 17318 df-ocomp 17319 df-proset 18352 df-poset 18371 df-lub 18404 df-ipo 18586 |
This theorem is referenced by: ipolub0 48781 mrelatlubALT 48784 toplatlub 48789 toplatjoin 48791 |
Copyright terms: Public domain | W3C validator |