| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub | Structured version Visualization version GIF version | ||
| Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18318 is in quantified form. mrelatlub 18468 could potentially be shortened using this. See mrelatlubALT 48983. (Contributed by Zhi Wang, 28-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
| ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
| ipolub.t | ⊢ (𝜑 → 𝑇 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipolub | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | ipolub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18437 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | ipolub.u | . 2 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
| 7 | 3 | ipopos 18442 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 9 | ipolub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 10 | ipolub.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐹) | |
| 11 | breq1 5095 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑇 ↔ 𝑦(le‘𝐼)𝑇)) | |
| 12 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
| 13 | intubeu 48972 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝐹 ∧ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
| 16 | 3, 2, 9, 1 | ipolublem 48974 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
| 17 | 10, 16 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣))) |
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 22 | 11, 20, 21 | rspcdva 3578 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦(le‘𝐼)𝑇) |
| 23 | breq2 5096 | . . . . . . 7 ⊢ (𝑣 = 𝑧 → (𝑤(le‘𝐼)𝑣 ↔ 𝑤(le‘𝐼)𝑧)) | |
| 24 | 23 | ralbidv 3152 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧)) |
| 25 | breq1 5095 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑧 ↔ 𝑦(le‘𝐼)𝑧)) | |
| 26 | 25 | cbvralvw 3207 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) |
| 27 | 24, 26 | bitrdi 287 | . . . . 5 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧)) |
| 28 | breq2 5096 | . . . . 5 ⊢ (𝑣 = 𝑧 → (𝑇(le‘𝐼)𝑣 ↔ 𝑇(le‘𝐼)𝑧)) | |
| 29 | 27, 28 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝑧 → ((∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧))) |
| 30 | 18 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → 𝑧 ∈ 𝐹) | |
| 33 | 29, 31, 32 | rspcdva 3578 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧)) |
| 34 | 33 | 3impia 1117 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹 ∧ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) → 𝑇(le‘𝐼)𝑧) |
| 35 | 1, 5, 6, 8, 9, 10, 22, 34 | poslubdg 18318 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ⊆ wss 3903 ∪ cuni 4858 ∩ cint 4896 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 Posetcpo 18213 lubclub 18215 toInccipo 18433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-proset 18200 df-poset 18219 df-lub 18250 df-ipo 18434 |
| This theorem is referenced by: ipolub0 48980 mrelatlubALT 48983 toplatlub 48988 toplatjoin 48990 |
| Copyright terms: Public domain | W3C validator |