Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipolub Structured version   Visualization version   GIF version

Theorem ipolub 48660
Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18484 is in quantified form. mrelatlub 18632 could potentially be shortened using this. See mrelatlubALT 48667. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipolub.u (𝜑𝑈 = (lub‘𝐼))
ipolubdm.t (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})
ipolub.t (𝜑𝑇𝐹)
Assertion
Ref Expression
ipolub (𝜑 → (𝑈𝑆) = 𝑇)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem ipolub
Dummy variables 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (le‘𝐼) = (le‘𝐼)
2 ipolub.f . . 3 (𝜑𝐹𝑉)
3 ipolub.i . . . 4 𝐼 = (toInc‘𝐹)
43ipobas 18601 . . 3 (𝐹𝑉𝐹 = (Base‘𝐼))
52, 4syl 17 . 2 (𝜑𝐹 = (Base‘𝐼))
6 ipolub.u . 2 (𝜑𝑈 = (lub‘𝐼))
73ipopos 18606 . . 3 𝐼 ∈ Poset
87a1i 11 . 2 (𝜑𝐼 ∈ Poset)
9 ipolub.s . 2 (𝜑𝑆𝐹)
10 ipolub.t . 2 (𝜑𝑇𝐹)
11 breq1 5169 . . 3 (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑇𝑦(le‘𝐼)𝑇))
12 ipolubdm.t . . . . . . 7 (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})
13 intubeu 48656 . . . . . . . 8 (𝑇𝐹 → (( 𝑆𝑇 ∧ ∀𝑣𝐹 ( 𝑆𝑣𝑇𝑣)) ↔ 𝑇 = {𝑥𝐹 𝑆𝑥}))
1413biimpar 477 . . . . . . 7 ((𝑇𝐹𝑇 = {𝑥𝐹 𝑆𝑥}) → ( 𝑆𝑇 ∧ ∀𝑣𝐹 ( 𝑆𝑣𝑇𝑣)))
1510, 12, 14syl2anc 583 . . . . . 6 (𝜑 → ( 𝑆𝑇 ∧ ∀𝑣𝐹 ( 𝑆𝑣𝑇𝑣)))
163, 2, 9, 1ipolublem 48658 . . . . . . 7 ((𝜑𝑇𝐹) → (( 𝑆𝑇 ∧ ∀𝑣𝐹 ( 𝑆𝑣𝑇𝑣)) ↔ (∀𝑤𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣𝐹 (∀𝑤𝑆 𝑤(le‘𝐼)𝑣𝑇(le‘𝐼)𝑣))))
1710, 16mpdan 686 . . . . . 6 (𝜑 → (( 𝑆𝑇 ∧ ∀𝑣𝐹 ( 𝑆𝑣𝑇𝑣)) ↔ (∀𝑤𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣𝐹 (∀𝑤𝑆 𝑤(le‘𝐼)𝑣𝑇(le‘𝐼)𝑣))))
1815, 17mpbid 232 . . . . 5 (𝜑 → (∀𝑤𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣𝐹 (∀𝑤𝑆 𝑤(le‘𝐼)𝑣𝑇(le‘𝐼)𝑣)))
1918simpld 494 . . . 4 (𝜑 → ∀𝑤𝑆 𝑤(le‘𝐼)𝑇)
2019adantr 480 . . 3 ((𝜑𝑦𝑆) → ∀𝑤𝑆 𝑤(le‘𝐼)𝑇)
21 simpr 484 . . 3 ((𝜑𝑦𝑆) → 𝑦𝑆)
2211, 20, 21rspcdva 3636 . 2 ((𝜑𝑦𝑆) → 𝑦(le‘𝐼)𝑇)
23 breq2 5170 . . . . . . 7 (𝑣 = 𝑧 → (𝑤(le‘𝐼)𝑣𝑤(le‘𝐼)𝑧))
2423ralbidv 3184 . . . . . 6 (𝑣 = 𝑧 → (∀𝑤𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑤𝑆 𝑤(le‘𝐼)𝑧))
25 breq1 5169 . . . . . . 7 (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑧𝑦(le‘𝐼)𝑧))
2625cbvralvw 3243 . . . . . 6 (∀𝑤𝑆 𝑤(le‘𝐼)𝑧 ↔ ∀𝑦𝑆 𝑦(le‘𝐼)𝑧)
2724, 26bitrdi 287 . . . . 5 (𝑣 = 𝑧 → (∀𝑤𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑦𝑆 𝑦(le‘𝐼)𝑧))
28 breq2 5170 . . . . 5 (𝑣 = 𝑧 → (𝑇(le‘𝐼)𝑣𝑇(le‘𝐼)𝑧))
2927, 28imbi12d 344 . . . 4 (𝑣 = 𝑧 → ((∀𝑤𝑆 𝑤(le‘𝐼)𝑣𝑇(le‘𝐼)𝑣) ↔ (∀𝑦𝑆 𝑦(le‘𝐼)𝑧𝑇(le‘𝐼)𝑧)))
3018simprd 495 . . . . 5 (𝜑 → ∀𝑣𝐹 (∀𝑤𝑆 𝑤(le‘𝐼)𝑣𝑇(le‘𝐼)𝑣))
3130adantr 480 . . . 4 ((𝜑𝑧𝐹) → ∀𝑣𝐹 (∀𝑤𝑆 𝑤(le‘𝐼)𝑣𝑇(le‘𝐼)𝑣))
32 simpr 484 . . . 4 ((𝜑𝑧𝐹) → 𝑧𝐹)
3329, 31, 32rspcdva 3636 . . 3 ((𝜑𝑧𝐹) → (∀𝑦𝑆 𝑦(le‘𝐼)𝑧𝑇(le‘𝐼)𝑧))
34333impia 1117 . 2 ((𝜑𝑧𝐹 ∧ ∀𝑦𝑆 𝑦(le‘𝐼)𝑧) → 𝑇(le‘𝐼)𝑧)
351, 5, 6, 8, 9, 10, 22, 34poslubdg 18484 1 (𝜑 → (𝑈𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   cuni 4931   cint 4970   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  lubclub 18379  toInccipo 18597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-proset 18365  df-poset 18383  df-lub 18416  df-ipo 18598
This theorem is referenced by:  ipolub0  48664  mrelatlubALT  48667  toplatlub  48672  toplatjoin  48674
  Copyright terms: Public domain W3C validator