| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub | Structured version Visualization version GIF version | ||
| Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18380 is in quantified form. mrelatlub 18528 could potentially be shortened using this. See mrelatlubALT 48987. (Contributed by Zhi Wang, 28-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
| ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
| ipolub.t | ⊢ (𝜑 → 𝑇 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipolub | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | ipolub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18497 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | ipolub.u | . 2 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
| 7 | 3 | ipopos 18502 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 9 | ipolub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 10 | ipolub.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐹) | |
| 11 | breq1 5113 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑇 ↔ 𝑦(le‘𝐼)𝑇)) | |
| 12 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
| 13 | intubeu 48976 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝐹 ∧ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
| 16 | 3, 2, 9, 1 | ipolublem 48978 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
| 17 | 10, 16 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣))) |
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 22 | 11, 20, 21 | rspcdva 3592 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦(le‘𝐼)𝑇) |
| 23 | breq2 5114 | . . . . . . 7 ⊢ (𝑣 = 𝑧 → (𝑤(le‘𝐼)𝑣 ↔ 𝑤(le‘𝐼)𝑧)) | |
| 24 | 23 | ralbidv 3157 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧)) |
| 25 | breq1 5113 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑧 ↔ 𝑦(le‘𝐼)𝑧)) | |
| 26 | 25 | cbvralvw 3216 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) |
| 27 | 24, 26 | bitrdi 287 | . . . . 5 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧)) |
| 28 | breq2 5114 | . . . . 5 ⊢ (𝑣 = 𝑧 → (𝑇(le‘𝐼)𝑣 ↔ 𝑇(le‘𝐼)𝑧)) | |
| 29 | 27, 28 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝑧 → ((∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧))) |
| 30 | 18 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → 𝑧 ∈ 𝐹) | |
| 33 | 29, 31, 32 | rspcdva 3592 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧)) |
| 34 | 33 | 3impia 1117 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹 ∧ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) → 𝑇(le‘𝐼)𝑧) |
| 35 | 1, 5, 6, 8, 9, 10, 22, 34 | poslubdg 18380 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 ∪ cuni 4874 ∩ cint 4913 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 lubclub 18277 toInccipo 18493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-tset 17246 df-ple 17247 df-ocomp 17248 df-proset 18262 df-poset 18281 df-lub 18312 df-ipo 18494 |
| This theorem is referenced by: ipolub0 48984 mrelatlubALT 48987 toplatlub 48992 toplatjoin 48994 |
| Copyright terms: Public domain | W3C validator |