| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub | Structured version Visualization version GIF version | ||
| Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18318 is in quantified form. mrelatlub 18468 could potentially be shortened using this. See mrelatlubALT 49105. (Contributed by Zhi Wang, 28-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
| ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
| ipolub.t | ⊢ (𝜑 → 𝑇 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipolub | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | ipolub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18437 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | ipolub.u | . 2 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
| 7 | 3 | ipopos 18442 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 9 | ipolub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 10 | ipolub.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐹) | |
| 11 | breq1 5092 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑇 ↔ 𝑦(le‘𝐼)𝑇)) | |
| 12 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
| 13 | intubeu 49094 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝐹 ∧ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣))) |
| 16 | 3, 2, 9, 1 | ipolublem 49096 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
| 17 | 10, 16 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑣 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇 ∧ ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣))) |
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑇) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 22 | 11, 20, 21 | rspcdva 3573 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦(le‘𝐼)𝑇) |
| 23 | breq2 5093 | . . . . . . 7 ⊢ (𝑣 = 𝑧 → (𝑤(le‘𝐼)𝑣 ↔ 𝑤(le‘𝐼)𝑧)) | |
| 24 | 23 | ralbidv 3155 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧)) |
| 25 | breq1 5092 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑤(le‘𝐼)𝑧 ↔ 𝑦(le‘𝐼)𝑧)) | |
| 26 | 25 | cbvralvw 3210 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) |
| 27 | 24, 26 | bitrdi 287 | . . . . 5 ⊢ (𝑣 = 𝑧 → (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 ↔ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧)) |
| 28 | breq2 5093 | . . . . 5 ⊢ (𝑣 = 𝑧 → (𝑇(le‘𝐼)𝑣 ↔ 𝑇(le‘𝐼)𝑧)) | |
| 29 | 27, 28 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝑧 → ((∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧))) |
| 30 | 18 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → ∀𝑣 ∈ 𝐹 (∀𝑤 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑇(le‘𝐼)𝑣)) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → 𝑧 ∈ 𝐹) | |
| 33 | 29, 31, 32 | rspcdva 3573 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑇(le‘𝐼)𝑧)) |
| 34 | 33 | 3impia 1117 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐹 ∧ ∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧) → 𝑇(le‘𝐼)𝑧) |
| 35 | 1, 5, 6, 8, 9, 10, 22, 34 | poslubdg 18318 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 ∪ cuni 4856 ∩ cint 4895 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 Posetcpo 18213 lubclub 18215 toInccipo 18433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-proset 18200 df-poset 18219 df-lub 18250 df-ipo 18434 |
| This theorem is referenced by: ipolub0 49102 mrelatlubALT 49105 toplatlub 49110 toplatjoin 49112 |
| Copyright terms: Public domain | W3C validator |