![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpss2 | Structured version Visualization version GIF version |
Description: Two ways to say that intersections with Cartesian products are in a subclass relation. (Contributed by Peter Mazsa, 8-Mar-2019.) |
Ref | Expression |
---|---|
inxpss2 | ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp 5828 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
2 | ssrel3 5800 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦)) |
4 | inxpss3 38308 | . 2 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) | |
5 | 3, 4 | bitri 275 | 1 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1536 ∀wral 3060 ∩ cin 3963 ⊆ wss 3964 class class class wbr 5149 × cxp 5688 Rel wrel 5695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-xp 5696 df-rel 5697 |
This theorem is referenced by: inxpssidinxp 38310 idinxpssinxp 38311 |
Copyright terms: Public domain | W3C validator |