Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpss2 Structured version   Visualization version   GIF version

Theorem inxpss2 38303
Description: Two ways to say that intersections with Cartesian products are in a subclass relation. (Contributed by Peter Mazsa, 8-Mar-2019.)
Assertion
Ref Expression
inxpss2 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥𝑆𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem inxpss2
StepHypRef Expression
1 relinxp 5777 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
2 ssrel3 5749 . . 3 (Rel (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦)))
31, 2ax-mp 5 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦))
4 inxpss3 38302 . 2 (∀𝑥𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥𝑆𝑦))
53, 4bitri 275 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥𝑆𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wral 3044  cin 3913  wss 3914   class class class wbr 5107   × cxp 5636  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  inxpssidinxp  38304  idinxpssinxp  38305
  Copyright terms: Public domain W3C validator