| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpss2 | Structured version Visualization version GIF version | ||
| Description: Two ways to say that intersections with Cartesian products are in a subclass relation. (Contributed by Peter Mazsa, 8-Mar-2019.) |
| Ref | Expression |
|---|---|
| inxpss2 | ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5777 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
| 2 | ssrel3 5749 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦)) |
| 4 | inxpss3 38302 | . 2 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑆 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: inxpssidinxp 38304 idinxpssinxp 38305 |
| Copyright terms: Public domain | W3C validator |