Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpssidinxp Structured version   Visualization version   GIF version

Theorem inxpssidinxp 36378
Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 36377. (Contributed by Peter Mazsa, 4-Jul-2019.)
Assertion
Ref Expression
inxpssidinxp ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxpssidinxp
StepHypRef Expression
1 inxpss2 36377 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 I 𝑦))
2 ideqg 5749 . . . . 5 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3428 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
43imbi2i 335 . . 3 ((𝑥𝑅𝑦𝑥 I 𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦))
542ralbii 3091 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 I 𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦))
61, 5bitri 274 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3063  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070   I cid 5479   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587
This theorem is referenced by:  dfcnvrefrels3  36572  dfcnvrefrel3  36574
  Copyright terms: Public domain W3C validator