Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpssidinxp | Structured version Visualization version GIF version |
Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 36377. (Contributed by Peter Mazsa, 4-Jul-2019.) |
Ref | Expression |
---|---|
inxpssidinxp | ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxpss2 36377 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥 I 𝑦)) | |
2 | ideqg 5749 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3428 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | 3 | imbi2i 335 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
5 | 4 | 2ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
6 | 1, 5 | bitri 274 | 1 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3063 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 I cid 5479 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 |
This theorem is referenced by: dfcnvrefrels3 36572 dfcnvrefrel3 36574 |
Copyright terms: Public domain | W3C validator |