Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpssidinxp Structured version   Visualization version   GIF version

Theorem inxpssidinxp 38292
Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 38291. (Contributed by Peter Mazsa, 4-Jul-2019.)
Assertion
Ref Expression
inxpssidinxp ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxpssidinxp
StepHypRef Expression
1 inxpss2 38291 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 I 𝑦))
2 ideqg 5842 . . . . 5 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3468 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
43imbi2i 336 . . 3 ((𝑥𝑅𝑦𝑥 I 𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦))
542ralbii 3115 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 I 𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦))
61, 5bitri 275 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ ( I ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wral 3050  Vcvv 3463  cin 3930  wss 3931   class class class wbr 5123   I cid 5557   × cxp 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672
This theorem is referenced by:  dfcnvrefrels3  38505  dfcnvrefrel3  38507
  Copyright terms: Public domain W3C validator