Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpssinxp | Structured version Visualization version GIF version |
Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 36450. (Contributed by Peter Mazsa, 6-Mar-2019.) |
Ref | Expression |
---|---|
idinxpssinxp | ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxpss2 36450 | . 2 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 I 𝑦 → 𝑥𝑅𝑦)) | |
2 | ideqg 5760 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3438 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | 3 | imbi1i 350 | . . 3 ⊢ ((𝑥 I 𝑦 → 𝑥𝑅𝑦) ↔ (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
5 | 4 | 2ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 I 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
6 | 1, 5 | bitri 274 | 1 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3064 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 I cid 5488 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 |
This theorem is referenced by: idinxpssinxp4 36455 |
Copyright terms: Public domain | W3C validator |