| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpssinxp | Structured version Visualization version GIF version | ||
| Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 38349. (Contributed by Peter Mazsa, 6-Mar-2019.) |
| Ref | Expression |
|---|---|
| idinxpssinxp | ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxpss2 38349 | . 2 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 I 𝑦 → 𝑥𝑅𝑦)) | |
| 2 | ideqg 5786 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
| 3 | 2 | elv 3441 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 4 | 3 | imbi1i 349 | . . 3 ⊢ ((𝑥 I 𝑦 → 𝑥𝑅𝑦) ↔ (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| 5 | 4 | 2ralbii 3107 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 I 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3047 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5086 I cid 5505 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 |
| This theorem is referenced by: idinxpssinxp4 38354 |
| Copyright terms: Public domain | W3C validator |