Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp Structured version   Visualization version   GIF version

Theorem idinxpssinxp 36189
Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 36187. (Contributed by Peter Mazsa, 6-Mar-2019.)
Assertion
Ref Expression
idinxpssinxp (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem idinxpssinxp
StepHypRef Expression
1 inxpss2 36187 . 2 (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 I 𝑦𝑥𝑅𝑦))
2 ideqg 5720 . . . . 5 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3414 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
43imbi1i 353 . . 3 ((𝑥 I 𝑦𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑥𝑅𝑦))
542ralbii 3089 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥 I 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
61, 5bitri 278 1 (( I ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wral 3061  Vcvv 3408  cin 3865  wss 3866   class class class wbr 5053   I cid 5454   × cxp 5549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558
This theorem is referenced by:  idinxpssinxp4  36192
  Copyright terms: Public domain W3C validator