MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota4an Structured version   Visualization version   GIF version

Theorem iota4an 6400
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 6399 . 2 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓))
2 iotaex 6398 . . . 4 (℩𝑥(𝜑𝜓)) ∈ V
3 simpl 482 . . . . 5 ((𝜑𝜓) → 𝜑)
43sbcth 3726 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑))
52, 4ax-mp 5 . . 3 [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑)
6 sbcimg 3762 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)))
72, 6ax-mp 5 . . 3 ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑))
85, 7mpbi 229 . 2 ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)
91, 8syl 17 1 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  ∃!weu 2568  Vcvv 3422  [wsbc 3711  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator