MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota4an Structured version   Visualization version   GIF version

Theorem iota4an 6470
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 6469 . 2 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓))
2 iotaex 6464 . . . 4 (℩𝑥(𝜑𝜓)) ∈ V
3 simpl 482 . . . . 5 ((𝜑𝜓) → 𝜑)
43sbcth 3752 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑))
52, 4ax-mp 5 . . 3 [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑)
6 sbcimg 3786 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)))
72, 6ax-mp 5 . . 3 ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑))
85, 7mpbi 230 . 2 ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)
91, 8syl 17 1 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  ∃!weu 2565  Vcvv 3437  [wsbc 3737  cio 6442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-sn 4578  df-pr 4580  df-uni 4861  df-iota 6444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator