Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iota4an | Structured version Visualization version GIF version |
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iota4an | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 6399 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓)) | |
2 | iotaex 6398 | . . . 4 ⊢ (℩𝑥(𝜑 ∧ 𝜓)) ∈ V | |
3 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | sbcth 3726 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) |
6 | sbcimg 3762 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) | |
7 | 2, 6 | ax-mp 5 | . . 3 ⊢ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑)) |
8 | 5, 7 | mpbi 229 | . 2 ⊢ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
9 | 1, 8 | syl 17 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃!weu 2568 Vcvv 3422 [wsbc 3711 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |