| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota4an | Structured version Visualization version GIF version | ||
| Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| Ref | Expression |
|---|---|
| iota4an | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 6495 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓)) | |
| 2 | iotaex 6487 | . . . 4 ⊢ (℩𝑥(𝜑 ∧ 𝜓)) ∈ V | |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | sbcth 3771 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) |
| 6 | sbcimg 3805 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑)) |
| 8 | 5, 7 | mpbi 230 | . 2 ⊢ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
| 9 | 1, 8 | syl 17 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2562 Vcvv 3450 [wsbc 3756 ℩cio 6465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |