| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota4 | Structured version Visualization version GIF version | ||
| Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| Ref | Expression |
|---|---|
| iota4 | ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2571 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | biimpr 220 | . . . . . 6 ⊢ ((𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = 𝑧 → 𝜑)) | |
| 3 | 2 | alimi 1812 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 4 | sb6 2090 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
| 5 | 3, 4 | sylibr 234 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [𝑧 / 𝑥]𝜑) |
| 6 | iotaval 6463 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
| 7 | 6 | eqcomd 2739 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
| 8 | dfsbcq2 3740 | . . . . 5 ⊢ (𝑧 = (℩𝑥𝜑) → ([𝑧 / 𝑥]𝜑 ↔ [(℩𝑥𝜑) / 𝑥]𝜑)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ([𝑧 / 𝑥]𝜑 ↔ [(℩𝑥𝜑) / 𝑥]𝜑)) |
| 10 | 5, 9 | mpbid 232 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑) |
| 11 | 10 | exlimiv 1931 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑) |
| 12 | 1, 11 | sylbi 217 | 1 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 [wsb 2067 ∃!weu 2565 [wsbc 3737 ℩cio 6443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-sbc 3738 df-un 3903 df-ss 3915 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6445 |
| This theorem is referenced by: iota4an 6471 iotacl 6475 pm14.24 44589 sbiota1 44591 eubrdm 47198 |
| Copyright terms: Public domain | W3C validator |