![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iota4 | Structured version Visualization version GIF version |
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iota4 | ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2568 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | biimpr 219 | . . . . . 6 ⊢ ((𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = 𝑧 → 𝜑)) | |
3 | 2 | alimi 1813 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
4 | sb6 2088 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
5 | 3, 4 | sylibr 233 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [𝑧 / 𝑥]𝜑) |
6 | iotaval 6514 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
7 | 6 | eqcomd 2738 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
8 | dfsbcq2 3780 | . . . . 5 ⊢ (𝑧 = (℩𝑥𝜑) → ([𝑧 / 𝑥]𝜑 ↔ [(℩𝑥𝜑) / 𝑥]𝜑)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ([𝑧 / 𝑥]𝜑 ↔ [(℩𝑥𝜑) / 𝑥]𝜑)) |
10 | 5, 9 | mpbid 231 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑) |
11 | 10 | exlimiv 1933 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑) |
12 | 1, 11 | sylbi 216 | 1 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∃wex 1781 [wsb 2067 ∃!weu 2562 [wsbc 3777 ℩cio 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-sbc 3778 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 |
This theorem is referenced by: iota4an 6525 iotacl 6529 pm14.24 43493 sbiota1 43495 eubrdm 46045 |
Copyright terms: Public domain | W3C validator |