MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota4 Structured version   Visualization version   GIF version

Theorem iota4 6517
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)

Proof of Theorem iota4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6 2574 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 biimpr 220 . . . . . 6 ((𝜑𝑥 = 𝑧) → (𝑥 = 𝑧𝜑))
32alimi 1811 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑥(𝑥 = 𝑧𝜑))
4 sb6 2086 . . . . 5 ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧𝜑))
53, 4sylibr 234 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → [𝑧 / 𝑥]𝜑)
6 iotaval 6507 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
76eqcomd 2742 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
8 dfsbcq2 3773 . . . . 5 (𝑧 = (℩𝑥𝜑) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
97, 8syl 17 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
105, 9mpbid 232 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
1110exlimiv 1930 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
121, 11sylbi 217 1 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  [wsb 2065  ∃!weu 2568  [wsbc 3770  cio 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-sbc 3771  df-un 3936  df-ss 3948  df-sn 4607  df-pr 4609  df-uni 4889  df-iota 6489
This theorem is referenced by:  iota4an  6518  iotacl  6522  pm14.24  44423  sbiota1  44425  eubrdm  47032
  Copyright terms: Public domain W3C validator