Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalsb Structured version   Visualization version   GIF version

Theorem iotavalsb 44402
Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalsb (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem iotavalsb
StepHypRef Expression
1 19.8a 2182 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 eu6 2577 . . 3 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
3 iotavalb 44399 . . . 4 (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
4 dfsbcq 3806 . . . . 5 (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
54eqcoms 2748 . . . 4 ((℩𝑥𝜑) = 𝑦 → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
63, 5biimtrdi 253 . . 3 (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓)))
72, 6sylbir 235 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓)))
81, 7mpcom 38 1 (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wex 1777  ∃!weu 2571  [wsbc 3804  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sbc 3805  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator