Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalsb Structured version   Visualization version   GIF version

Theorem iotavalsb 41940
Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalsb (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem iotavalsb
StepHypRef Expression
1 19.8a 2176 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 eu6 2574 . . 3 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
3 iotavalb 41937 . . . 4 (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
4 dfsbcq 3713 . . . . 5 (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
54eqcoms 2746 . . . 4 ((℩𝑥𝜑) = 𝑦 → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
63, 5syl6bi 252 . . 3 (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓)))
72, 6sylbir 234 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓)))
81, 7mpcom 38 1 (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1783  ∃!weu 2568  [wsbc 3711  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator