![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotavalsb | Structured version Visualization version GIF version |
Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotavalsb | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2179 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | eu6 2572 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
3 | iotavalb 44426 | . . . 4 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) | |
4 | dfsbcq 3793 | . . . . 5 ⊢ (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) | |
5 | 4 | eqcoms 2743 | . . . 4 ⊢ ((℩𝑥𝜑) = 𝑦 → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) |
6 | 3, 5 | biimtrdi 253 | . . 3 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓))) |
7 | 2, 6 | sylbir 235 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓))) |
8 | 1, 7 | mpcom 38 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1776 ∃!weu 2566 [wsbc 3791 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-sbc 3792 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |