Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotavalsb | Structured version Visualization version GIF version |
Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotavalsb | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2176 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | eu6 2574 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
3 | iotavalb 41937 | . . . 4 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) | |
4 | dfsbcq 3713 | . . . . 5 ⊢ (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) | |
5 | 4 | eqcoms 2746 | . . . 4 ⊢ ((℩𝑥𝜑) = 𝑦 → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) |
6 | 3, 5 | syl6bi 252 | . . 3 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓))) |
7 | 2, 6 | sylbir 234 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓))) |
8 | 1, 7 | mpcom 38 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∃!weu 2568 [wsbc 3711 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |