MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met1stc Structured version   Visualization version   GIF version

Theorem met1stc 24021
Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
met1stc (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ 1stΟ‰)

Proof of Theorem met1stc
Dummy variables 𝑛 π‘Ÿ 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpenβ€˜π·)
21mopntop 23937 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ Top)
31mopnuni 23938 . . . . . 6 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
43eleq2d 2819 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (π‘₯ ∈ 𝑋 ↔ π‘₯ ∈ βˆͺ 𝐽))
54biimpar 478 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ π‘₯ ∈ 𝑋)
6 simpll 765 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑛 ∈ β„•) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
7 simplr 767 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑛 ∈ β„•) β†’ π‘₯ ∈ 𝑋)
8 nnrp 12981 . . . . . . . . . . . 12 (𝑛 ∈ β„• β†’ 𝑛 ∈ ℝ+)
98adantl 482 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ ℝ+)
109rpreccld 13022 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑛 ∈ β„•) β†’ (1 / 𝑛) ∈ ℝ+)
1110rpxrd 13013 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑛 ∈ β„•) β†’ (1 / 𝑛) ∈ ℝ*)
121blopn 24000 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ (1 / 𝑛) ∈ ℝ*) β†’ (π‘₯(ballβ€˜π·)(1 / 𝑛)) ∈ 𝐽)
136, 7, 11, 12syl3anc 1371 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑛 ∈ β„•) β†’ (π‘₯(ballβ€˜π·)(1 / 𝑛)) ∈ 𝐽)
1413fmpttd 7111 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))):β„•βŸΆπ½)
1514frnd 6722 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) βŠ† 𝐽)
16 nnex 12214 . . . . . . . . 9 β„• ∈ V
1716mptex 7221 . . . . . . . 8 (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) ∈ V
1817rnex 7899 . . . . . . 7 ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) ∈ V
1918elpw 4605 . . . . . 6 (ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) ∈ 𝒫 𝐽 ↔ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) βŠ† 𝐽)
2015, 19sylibr 233 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) ∈ 𝒫 𝐽)
21 omelon 9637 . . . . . . . . 9 Ο‰ ∈ On
22 nnenom 13941 . . . . . . . . . 10 β„• β‰ˆ Ο‰
2322ensymi 8996 . . . . . . . . 9 Ο‰ β‰ˆ β„•
24 isnumi 9937 . . . . . . . . 9 ((Ο‰ ∈ On ∧ Ο‰ β‰ˆ β„•) β†’ β„• ∈ dom card)
2521, 23, 24mp2an 690 . . . . . . . 8 β„• ∈ dom card
26 ovex 7438 . . . . . . . . . 10 (π‘₯(ballβ€˜π·)(1 / 𝑛)) ∈ V
27 eqid 2732 . . . . . . . . . 10 (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) = (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))
2826, 27fnmpti 6690 . . . . . . . . 9 (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) Fn β„•
29 dffn4 6808 . . . . . . . . 9 ((𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) Fn β„• ↔ (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))):ℕ–ontoβ†’ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))))
3028, 29mpbi 229 . . . . . . . 8 (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))):ℕ–ontoβ†’ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))
31 fodomnum 10048 . . . . . . . 8 (β„• ∈ dom card β†’ ((𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))):ℕ–ontoβ†’ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β†’ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό β„•))
3225, 30, 31mp2 9 . . . . . . 7 ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό β„•
33 domentr 9005 . . . . . . 7 ((ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό β„• ∧ β„• β‰ˆ Ο‰) β†’ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό Ο‰)
3432, 22, 33mp2an 690 . . . . . 6 ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό Ο‰
3534a1i 11 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό Ο‰)
36 simpll 765 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
37 simprl 769 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑧 ∈ 𝐽)
38 simprr 771 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ π‘₯ ∈ 𝑧)
391mopni2 23993 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)
4036, 37, 38, 39syl3anc 1371 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)
41 simp-4l 781 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
42 simp-4r 782 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ π‘₯ ∈ 𝑋)
43 simprl 769 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ 𝑦 ∈ β„•)
4443nnrpd 13010 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ 𝑦 ∈ ℝ+)
4544rpreccld 13022 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (1 / 𝑦) ∈ ℝ+)
46 blcntr 23910 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ (1 / 𝑦) ∈ ℝ+) β†’ π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)))
4741, 42, 45, 46syl3anc 1371 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)))
4845rpxrd 13013 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (1 / 𝑦) ∈ ℝ*)
49 simplrl 775 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ+)
5049rpxrd 13013 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ*)
51 nnrecre 12250 . . . . . . . . . . . . . . 15 (𝑦 ∈ β„• β†’ (1 / 𝑦) ∈ ℝ)
5251ad2antrl 726 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (1 / 𝑦) ∈ ℝ)
5349rpred 13012 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ)
54 simprr 771 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (1 / 𝑦) < π‘Ÿ)
5552, 53, 54ltled 11358 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (1 / 𝑦) ≀ π‘Ÿ)
56 ssbl 23920 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ ((1 / 𝑦) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) ∧ (1 / 𝑦) ≀ π‘Ÿ) β†’ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† (π‘₯(ballβ€˜π·)π‘Ÿ))
5741, 42, 48, 50, 55, 56syl221anc 1381 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† (π‘₯(ballβ€˜π·)π‘Ÿ))
58 simplrr 776 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)
5957, 58sstrd 3991 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧)
6047, 59jca 512 . . . . . . . . . 10 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) ∧ (𝑦 ∈ β„• ∧ (1 / 𝑦) < π‘Ÿ)) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)) ∧ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧))
61 elrp 12972 . . . . . . . . . . . 12 (π‘Ÿ ∈ ℝ+ ↔ (π‘Ÿ ∈ ℝ ∧ 0 < π‘Ÿ))
62 nnrecl 12466 . . . . . . . . . . . 12 ((π‘Ÿ ∈ ℝ ∧ 0 < π‘Ÿ) β†’ βˆƒπ‘¦ ∈ β„• (1 / 𝑦) < π‘Ÿ)
6361, 62sylbi 216 . . . . . . . . . . 11 (π‘Ÿ ∈ ℝ+ β†’ βˆƒπ‘¦ ∈ β„• (1 / 𝑦) < π‘Ÿ)
6463ad2antrl 726 . . . . . . . . . 10 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ βˆƒπ‘¦ ∈ β„• (1 / 𝑦) < π‘Ÿ)
6560, 64reximddv 3171 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ βˆƒπ‘¦ ∈ β„• (π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)) ∧ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧))
6640, 65rexlimddv 3161 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ βˆƒπ‘¦ ∈ β„• (π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)) ∧ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧))
67 ovexd 7440 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ 𝑦 ∈ β„•) β†’ (π‘₯(ballβ€˜π·)(1 / 𝑦)) ∈ V)
68 vex 3478 . . . . . . . . . 10 𝑀 ∈ V
69 oveq2 7413 . . . . . . . . . . . . 13 (𝑛 = 𝑦 β†’ (1 / 𝑛) = (1 / 𝑦))
7069oveq2d 7421 . . . . . . . . . . . 12 (𝑛 = 𝑦 β†’ (π‘₯(ballβ€˜π·)(1 / 𝑛)) = (π‘₯(ballβ€˜π·)(1 / 𝑦)))
7170cbvmptv 5260 . . . . . . . . . . 11 (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) = (𝑦 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑦)))
7271elrnmpt 5953 . . . . . . . . . 10 (𝑀 ∈ V β†’ (𝑀 ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) ↔ βˆƒπ‘¦ ∈ β„• 𝑀 = (π‘₯(ballβ€˜π·)(1 / 𝑦))))
7368, 72mp1i 13 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ (𝑀 ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) ↔ βˆƒπ‘¦ ∈ β„• 𝑀 = (π‘₯(ballβ€˜π·)(1 / 𝑦))))
74 eleq2 2822 . . . . . . . . . . 11 (𝑀 = (π‘₯(ballβ€˜π·)(1 / 𝑦)) β†’ (π‘₯ ∈ 𝑀 ↔ π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦))))
75 sseq1 4006 . . . . . . . . . . 11 (𝑀 = (π‘₯(ballβ€˜π·)(1 / 𝑦)) β†’ (𝑀 βŠ† 𝑧 ↔ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧))
7674, 75anbi12d 631 . . . . . . . . . 10 (𝑀 = (π‘₯(ballβ€˜π·)(1 / 𝑦)) β†’ ((π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧) ↔ (π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)) ∧ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧)))
7776adantl 482 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) ∧ 𝑀 = (π‘₯(ballβ€˜π·)(1 / 𝑦))) β†’ ((π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧) ↔ (π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)) ∧ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧)))
7867, 73, 77rexxfr2d 5408 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ (βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧) ↔ βˆƒπ‘¦ ∈ β„• (π‘₯ ∈ (π‘₯(ballβ€˜π·)(1 / 𝑦)) ∧ (π‘₯(ballβ€˜π·)(1 / 𝑦)) βŠ† 𝑧)))
7966, 78mpbird 256 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ (𝑧 ∈ 𝐽 ∧ π‘₯ ∈ 𝑧)) β†’ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))
8079expr 457 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑧 ∈ 𝐽) β†’ (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)))
8180ralrimiva 3146 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)))
82 breq1 5150 . . . . . . 7 (𝑦 = ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β†’ (𝑦 β‰Ό Ο‰ ↔ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό Ο‰))
83 rexeq 3321 . . . . . . . . 9 (𝑦 = ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β†’ (βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧) ↔ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)))
8483imbi2d 340 . . . . . . . 8 (𝑦 = ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β†’ ((π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)) ↔ (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))))
8584ralbidv 3177 . . . . . . 7 (𝑦 = ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β†’ (βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)) ↔ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))))
8682, 85anbi12d 631 . . . . . 6 (𝑦 = ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β†’ ((𝑦 β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))) ↔ (ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)))))
8786rspcev 3612 . . . . 5 ((ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) ∈ 𝒫 𝐽 ∧ (ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛))) β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ ran (𝑛 ∈ β„• ↦ (π‘₯(ballβ€˜π·)(1 / 𝑛)))(π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)))) β†’ βˆƒπ‘¦ ∈ 𝒫 𝐽(𝑦 β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))))
8820, 35, 81, 87syl12anc 835 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝒫 𝐽(𝑦 β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))))
895, 88syldan 591 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ βˆƒπ‘¦ ∈ 𝒫 𝐽(𝑦 β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))))
9089ralrimiva 3146 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ βˆͺ π½βˆƒπ‘¦ ∈ 𝒫 𝐽(𝑦 β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧))))
91 eqid 2732 . . 3 βˆͺ 𝐽 = βˆͺ 𝐽
9291is1stc2 22937 . 2 (𝐽 ∈ 1stΟ‰ ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ βˆͺ π½βˆƒπ‘¦ ∈ 𝒫 𝐽(𝑦 β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝐽 (π‘₯ ∈ 𝑧 β†’ βˆƒπ‘€ ∈ 𝑦 (π‘₯ ∈ 𝑀 ∧ 𝑀 βŠ† 𝑧)))))
932, 90, 92sylanbrc 583 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ 1stΟ‰)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  ran crn 5676  Oncon0 6361   Fn wfn 6535  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851   β‰ˆ cen 8932   β‰Ό cdom 8933  cardccrd 9926  β„cr 11105  0cc0 11106  1c1 11107  β„*cxr 11243   < clt 11244   ≀ cle 11245   / cdiv 11867  β„•cn 12208  β„+crp 12970  βˆžMetcxmet 20921  ballcbl 20923  MetOpencmopn 20926  Topctop 22386  1stΟ‰c1stc 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-1stc 22934
This theorem is referenced by:  metelcls  24813  metcnp4  24818  metcn4  24819
  Copyright terms: Public domain W3C validator