MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met1stc Structured version   Visualization version   GIF version

Theorem met1stc 23877
Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met1stc (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1stω)

Proof of Theorem met1stc
Dummy variables 𝑛 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntop 23793 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
31mopnuni 23794 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
43eleq2d 2823 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝐽))
54biimpar 478 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → 𝑥𝑋)
6 simpll 765 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
7 simplr 767 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑥𝑋)
8 nnrp 12926 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
98adantl 482 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
109rpreccld 12967 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
1110rpxrd 12958 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ*)
121blopn 23856 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
136, 7, 11, 12syl3anc 1371 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
1413fmpttd 7063 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ⟶𝐽)
1514frnd 6676 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
16 nnex 12159 . . . . . . . . 9 ℕ ∈ V
1716mptex 7173 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
1817rnex 7849 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
1918elpw 4564 . . . . . 6 (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
2015, 19sylibr 233 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽)
21 omelon 9582 . . . . . . . . 9 ω ∈ On
22 nnenom 13885 . . . . . . . . . 10 ℕ ≈ ω
2322ensymi 8944 . . . . . . . . 9 ω ≈ ℕ
24 isnumi 9882 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
2521, 23, 24mp2an 690 . . . . . . . 8 ℕ ∈ dom card
26 ovex 7390 . . . . . . . . . 10 (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ V
27 eqid 2736 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
2826, 27fnmpti 6644 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ
29 dffn4 6762 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ ↔ (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))))
3028, 29mpbi 229 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
31 fodomnum 9993 . . . . . . . 8 (ℕ ∈ dom card → ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ))
3225, 30, 31mp2 9 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ
33 domentr 8953 . . . . . . 7 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
3432, 22, 33mp2an 690 . . . . . 6 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω
3534a1i 11 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
36 simpll 765 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
37 simprl 769 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑧𝐽)
38 simprr 771 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑥𝑧)
391mopni2 23849 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝑥𝑧) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
4036, 37, 38, 39syl3anc 1371 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
41 simp-4l 781 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
42 simp-4r 782 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥𝑋)
43 simprl 769 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℕ)
4443nnrpd 12955 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℝ+)
4544rpreccld 12967 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ+)
46 blcntr 23766 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑦) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4741, 42, 45, 46syl3anc 1371 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4845rpxrd 12958 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ*)
49 simplrl 775 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ+)
5049rpxrd 12958 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ*)
51 nnrecre 12195 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
5251ad2antrl 726 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ)
5349rpred 12957 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ)
54 simprr 771 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) < 𝑟)
5552, 53, 54ltled 11303 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ≤ 𝑟)
56 ssbl 23776 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ ((1 / 𝑦) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (1 / 𝑦) ≤ 𝑟) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
5741, 42, 48, 50, 55, 56syl221anc 1381 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
58 simplrr 776 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
5957, 58sstrd 3954 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)
6047, 59jca 512 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
61 elrp 12917 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
62 nnrecl 12411 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6361, 62sylbi 216 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6463ad2antrl 726 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6560, 64reximddv 3168 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
6640, 65rexlimddv 3158 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
67 ovexd 7392 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑦 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑦)) ∈ V)
68 vex 3449 . . . . . . . . . 10 𝑤 ∈ V
69 oveq2 7365 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (1 / 𝑛) = (1 / 𝑦))
7069oveq2d 7373 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (𝑥(ball‘𝐷)(1 / 𝑛)) = (𝑥(ball‘𝐷)(1 / 𝑦)))
7170cbvmptv 5218 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑦 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑦)))
7271elrnmpt 5911 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
7368, 72mp1i 13 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
74 eleq2 2826 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑥𝑤𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦))))
75 sseq1 3969 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑤𝑧 ↔ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
7674, 75anbi12d 631 . . . . . . . . . 10 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
7776adantl 482 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
7867, 73, 77rexxfr2d 5366 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧) ↔ ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
7966, 78mpbird 256 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))
8079expr 457 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑧𝐽) → (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8180ralrimiva 3143 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
82 breq1 5108 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (𝑦 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω))
83 rexeq 3310 . . . . . . . . 9 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8483imbi2d 340 . . . . . . . 8 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8584ralbidv 3174 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8682, 85anbi12d 631 . . . . . 6 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))))
8786rspcev 3581 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ∧ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8820, 35, 81, 87syl12anc 835 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
895, 88syldan 591 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9089ralrimiva 3143 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
91 eqid 2736 . . 3 𝐽 = 𝐽
9291is1stc2 22793 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
932, 90, 92sylanbrc 583 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910  𝒫 cpw 4560   cuni 4865   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  Oncon0 6317   Fn wfn 6491  ontowfo 6494  cfv 6496  (class class class)co 7357  ωcom 7802  cen 8880  cdom 8881  cardccrd 9871  cr 11050  0cc0 11051  1c1 11052  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  cn 12153  +crp 12915  ∞Metcxmet 20781  ballcbl 20783  MetOpencmopn 20786  Topctop 22242  1stωc1stc 22788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-1stc 22790
This theorem is referenced by:  metelcls  24669  metcnp4  24674  metcn4  24675
  Copyright terms: Public domain W3C validator