MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndc1stc Structured version   Visualization version   GIF version

Theorem 2ndc1stc 23336
Description: A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.)
Assertion
Ref Expression
2ndc1stc (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω)

Proof of Theorem 2ndc1stc
Dummy variables 𝑜 𝑏 𝑝 𝑞 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndctop 23332 . 2 (𝐽 ∈ 2ndω → 𝐽 ∈ Top)
2 is2ndc 23331 . . . 4 (𝐽 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
3 ssrab2 4031 . . . . . . . . . . 11 {𝑞𝑏𝑥𝑞} ⊆ 𝑏
4 bastg 22851 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
543ad2ant1 1133 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ⊆ (topGen‘𝑏))
63, 5sstrid 3947 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
7 fvex 6835 . . . . . . . . . . 11 (topGen‘𝑏) ∈ V
87elpw2 5273 . . . . . . . . . 10 ({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ↔ {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
96, 8sylibr 234 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏))
10 vex 3440 . . . . . . . . . . 11 𝑏 ∈ V
11 ssdomg 8925 . . . . . . . . . . 11 (𝑏 ∈ V → ({𝑞𝑏𝑥𝑞} ⊆ 𝑏 → {𝑞𝑏𝑥𝑞} ≼ 𝑏))
1210, 3, 11mp2 9 . . . . . . . . . 10 {𝑞𝑏𝑥𝑞} ≼ 𝑏
13 simp2 1137 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ≼ ω)
14 domtr 8932 . . . . . . . . . 10 (({𝑞𝑏𝑥𝑞} ≼ 𝑏𝑏 ≼ ω) → {𝑞𝑏𝑥𝑞} ≼ ω)
1512, 13, 14sylancr 587 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ≼ ω)
16 eltg2b 22844 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
17163ad2ant1 1133 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
18 elequ1 2116 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑡𝑥𝑡))
1918anbi1d 631 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦𝑡𝑡𝑜) ↔ (𝑥𝑡𝑡𝑜)))
2019rexbidv 3153 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑡𝑏 (𝑦𝑡𝑡𝑜) ↔ ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
2120rspccv 3574 . . . . . . . . . . . 12 (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
22 id 22 . . . . . . . . . . . . . . . 16 ((𝑡𝑏𝑥𝑡) → (𝑡𝑏𝑥𝑡))
2322adantrr 717 . . . . . . . . . . . . . . 15 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → (𝑡𝑏𝑥𝑡))
24 elequ2 2124 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑡 → (𝑥𝑞𝑥𝑡))
2524elrab 3648 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑞𝑏𝑥𝑞} ↔ (𝑡𝑏𝑥𝑡))
2623, 25sylibr 234 . . . . . . . . . . . . . 14 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → 𝑡 ∈ {𝑞𝑏𝑥𝑞})
27 simprr 772 . . . . . . . . . . . . . 14 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → (𝑥𝑡𝑡𝑜))
28 elequ2 2124 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑥𝑝𝑥𝑡))
29 sseq1 3961 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑝𝑜𝑡𝑜))
3028, 29anbi12d 632 . . . . . . . . . . . . . . 15 (𝑝 = 𝑡 → ((𝑥𝑝𝑝𝑜) ↔ (𝑥𝑡𝑡𝑜)))
3130rspcev 3577 . . . . . . . . . . . . . 14 ((𝑡 ∈ {𝑞𝑏𝑥𝑞} ∧ (𝑥𝑡𝑡𝑜)) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3226, 27, 31syl2an2 686 . . . . . . . . . . . . 13 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3332rexlimdvaa 3131 . . . . . . . . . . . 12 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∃𝑡𝑏 (𝑥𝑡𝑡𝑜) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
3421, 33syl9r 78 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3517, 34sylbid 240 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3635ralrimiv 3120 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
37 breq1 5095 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (𝑠 ≼ ω ↔ {𝑞𝑏𝑥𝑞} ≼ ω))
38 rexeq 3285 . . . . . . . . . . . . 13 (𝑠 = {𝑞𝑏𝑥𝑞} → (∃𝑝𝑠 (𝑥𝑝𝑝𝑜) ↔ ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
3938imbi2d 340 . . . . . . . . . . . 12 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4039ralbidv 3152 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4137, 40anbi12d 632 . . . . . . . . . 10 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))))
4241rspcev 3577 . . . . . . . . 9 (({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ∧ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
439, 15, 36, 42syl12anc 836 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
44433expia 1121 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
45 unieq 4869 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
4645eleq2d 2814 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (𝑥 (topGen‘𝑏) ↔ 𝑥 𝐽))
47 pweq 4565 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → 𝒫 (topGen‘𝑏) = 𝒫 𝐽)
48 raleq 3286 . . . . . . . . . 10 ((topGen‘𝑏) = 𝐽 → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
4948anbi2d 630 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ (𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5047, 49rexeqbidv 3310 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5146, 50imbi12d 344 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → ((𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))) ↔ (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5244, 51syl5ibcom 245 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5352expimpd 453 . . . . 5 (𝑏 ∈ TopBases → ((𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5453rexlimiv 3123 . . . 4 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
552, 54sylbi 217 . . 3 (𝐽 ∈ 2ndω → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5655ralrimiv 3120 . 2 (𝐽 ∈ 2ndω → ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
57 eqid 2729 . . 3 𝐽 = 𝐽
5857is1stc2 23327 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
591, 56, 58sylanbrc 583 1 (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  wss 3903  𝒫 cpw 4551   cuni 4858   class class class wbr 5092  cfv 6482  ωcom 7799  cdom 8870  topGenctg 17341  Topctop 22778  TopBasesctb 22830  1stωc1stc 23322  2ndωc2ndc 23323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-dom 8874  df-topgen 17347  df-top 22779  df-bases 22831  df-1stc 23324  df-2ndc 23325
This theorem is referenced by:  dis1stc  23384
  Copyright terms: Public domain W3C validator