MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndc1stc Structured version   Visualization version   GIF version

Theorem 2ndc1stc 21975
Description: A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.)
Assertion
Ref Expression
2ndc1stc (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω)

Proof of Theorem 2ndc1stc
Dummy variables 𝑜 𝑏 𝑝 𝑞 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndctop 21971 . 2 (𝐽 ∈ 2ndω → 𝐽 ∈ Top)
2 is2ndc 21970 . . . 4 (𝐽 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
3 ssrab2 4059 . . . . . . . . . . 11 {𝑞𝑏𝑥𝑞} ⊆ 𝑏
4 bastg 21490 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
543ad2ant1 1127 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ⊆ (topGen‘𝑏))
63, 5sstrid 3981 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
7 fvex 6679 . . . . . . . . . . 11 (topGen‘𝑏) ∈ V
87elpw2 5244 . . . . . . . . . 10 ({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ↔ {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
96, 8sylibr 235 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏))
10 vex 3502 . . . . . . . . . . 11 𝑏 ∈ V
11 ssdomg 8547 . . . . . . . . . . 11 (𝑏 ∈ V → ({𝑞𝑏𝑥𝑞} ⊆ 𝑏 → {𝑞𝑏𝑥𝑞} ≼ 𝑏))
1210, 3, 11mp2 9 . . . . . . . . . 10 {𝑞𝑏𝑥𝑞} ≼ 𝑏
13 simp2 1131 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ≼ ω)
14 domtr 8554 . . . . . . . . . 10 (({𝑞𝑏𝑥𝑞} ≼ 𝑏𝑏 ≼ ω) → {𝑞𝑏𝑥𝑞} ≼ ω)
1512, 13, 14sylancr 587 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ≼ ω)
16 eltg2b 21483 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
17163ad2ant1 1127 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
18 elequ1 2113 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑡𝑥𝑡))
1918anbi1d 629 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦𝑡𝑡𝑜) ↔ (𝑥𝑡𝑡𝑜)))
2019rexbidv 3301 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑡𝑏 (𝑦𝑡𝑡𝑜) ↔ ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
2120rspccv 3623 . . . . . . . . . . . 12 (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
22 id 22 . . . . . . . . . . . . . . . 16 ((𝑡𝑏𝑥𝑡) → (𝑡𝑏𝑥𝑡))
2322adantrr 713 . . . . . . . . . . . . . . 15 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → (𝑡𝑏𝑥𝑡))
24 elequ2 2121 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑡 → (𝑥𝑞𝑥𝑡))
2524elrab 3683 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑞𝑏𝑥𝑞} ↔ (𝑡𝑏𝑥𝑡))
2623, 25sylibr 235 . . . . . . . . . . . . . 14 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → 𝑡 ∈ {𝑞𝑏𝑥𝑞})
27 simprr 769 . . . . . . . . . . . . . 14 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → (𝑥𝑡𝑡𝑜))
28 elequ2 2121 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑥𝑝𝑥𝑡))
29 sseq1 3995 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑝𝑜𝑡𝑜))
3028, 29anbi12d 630 . . . . . . . . . . . . . . 15 (𝑝 = 𝑡 → ((𝑥𝑝𝑝𝑜) ↔ (𝑥𝑡𝑡𝑜)))
3130rspcev 3626 . . . . . . . . . . . . . 14 ((𝑡 ∈ {𝑞𝑏𝑥𝑞} ∧ (𝑥𝑡𝑡𝑜)) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3226, 27, 31syl2an2 682 . . . . . . . . . . . . 13 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3332rexlimdvaa 3289 . . . . . . . . . . . 12 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∃𝑡𝑏 (𝑥𝑡𝑡𝑜) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
3421, 33syl9r 78 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3517, 34sylbid 241 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3635ralrimiv 3185 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
37 breq1 5065 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (𝑠 ≼ ω ↔ {𝑞𝑏𝑥𝑞} ≼ ω))
38 rexeq 3411 . . . . . . . . . . . . 13 (𝑠 = {𝑞𝑏𝑥𝑞} → (∃𝑝𝑠 (𝑥𝑝𝑝𝑜) ↔ ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
3938imbi2d 342 . . . . . . . . . . . 12 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4039ralbidv 3201 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4137, 40anbi12d 630 . . . . . . . . . 10 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))))
4241rspcev 3626 . . . . . . . . 9 (({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ∧ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
439, 15, 36, 42syl12anc 834 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
44433expia 1115 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
45 unieq 4844 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
4645eleq2d 2902 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (𝑥 (topGen‘𝑏) ↔ 𝑥 𝐽))
47 pweq 4544 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → 𝒫 (topGen‘𝑏) = 𝒫 𝐽)
48 raleq 3410 . . . . . . . . . 10 ((topGen‘𝑏) = 𝐽 → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
4948anbi2d 628 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ (𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5047, 49rexeqbidv 3407 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5146, 50imbi12d 346 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → ((𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))) ↔ (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5244, 51syl5ibcom 246 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5352expimpd 454 . . . . 5 (𝑏 ∈ TopBases → ((𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5453rexlimiv 3284 . . . 4 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
552, 54sylbi 218 . . 3 (𝐽 ∈ 2ndω → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5655ralrimiv 3185 . 2 (𝐽 ∈ 2ndω → ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
57 eqid 2824 . . 3 𝐽 = 𝐽
5857is1stc2 21966 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
591, 56, 58sylanbrc 583 1 (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wral 3142  wrex 3143  {crab 3146  Vcvv 3499  wss 3939  𝒫 cpw 4541   cuni 4836   class class class wbr 5062  cfv 6351  ωcom 7571  cdom 8499  topGenctg 16703  Topctop 21417  TopBasesctb 21469  1stωc1stc 21961  2ndωc2ndc 21962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-dom 8503  df-topgen 16709  df-top 21418  df-bases 21470  df-1stc 21963  df-2ndc 21964
This theorem is referenced by:  dis1stc  22023
  Copyright terms: Public domain W3C validator