MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndc1stc Structured version   Visualization version   GIF version

Theorem 2ndc1stc 23446
Description: A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.)
Assertion
Ref Expression
2ndc1stc (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω)

Proof of Theorem 2ndc1stc
Dummy variables 𝑜 𝑏 𝑝 𝑞 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndctop 23442 . 2 (𝐽 ∈ 2ndω → 𝐽 ∈ Top)
2 is2ndc 23441 . . . 4 (𝐽 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
3 ssrab2 4076 . . . . . . . . . . 11 {𝑞𝑏𝑥𝑞} ⊆ 𝑏
4 bastg 22960 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
543ad2ant1 1130 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ⊆ (topGen‘𝑏))
63, 5sstrid 3991 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
7 fvex 6914 . . . . . . . . . . 11 (topGen‘𝑏) ∈ V
87elpw2 5352 . . . . . . . . . 10 ({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ↔ {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
96, 8sylibr 233 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏))
10 vex 3466 . . . . . . . . . . 11 𝑏 ∈ V
11 ssdomg 9031 . . . . . . . . . . 11 (𝑏 ∈ V → ({𝑞𝑏𝑥𝑞} ⊆ 𝑏 → {𝑞𝑏𝑥𝑞} ≼ 𝑏))
1210, 3, 11mp2 9 . . . . . . . . . 10 {𝑞𝑏𝑥𝑞} ≼ 𝑏
13 simp2 1134 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ≼ ω)
14 domtr 9038 . . . . . . . . . 10 (({𝑞𝑏𝑥𝑞} ≼ 𝑏𝑏 ≼ ω) → {𝑞𝑏𝑥𝑞} ≼ ω)
1512, 13, 14sylancr 585 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ≼ ω)
16 eltg2b 22953 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
17163ad2ant1 1130 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
18 elequ1 2106 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑡𝑥𝑡))
1918anbi1d 629 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦𝑡𝑡𝑜) ↔ (𝑥𝑡𝑡𝑜)))
2019rexbidv 3169 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑡𝑏 (𝑦𝑡𝑡𝑜) ↔ ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
2120rspccv 3605 . . . . . . . . . . . 12 (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
22 id 22 . . . . . . . . . . . . . . . 16 ((𝑡𝑏𝑥𝑡) → (𝑡𝑏𝑥𝑡))
2322adantrr 715 . . . . . . . . . . . . . . 15 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → (𝑡𝑏𝑥𝑡))
24 elequ2 2114 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑡 → (𝑥𝑞𝑥𝑡))
2524elrab 3681 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑞𝑏𝑥𝑞} ↔ (𝑡𝑏𝑥𝑡))
2623, 25sylibr 233 . . . . . . . . . . . . . 14 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → 𝑡 ∈ {𝑞𝑏𝑥𝑞})
27 simprr 771 . . . . . . . . . . . . . 14 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → (𝑥𝑡𝑡𝑜))
28 elequ2 2114 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑥𝑝𝑥𝑡))
29 sseq1 4005 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑝𝑜𝑡𝑜))
3028, 29anbi12d 630 . . . . . . . . . . . . . . 15 (𝑝 = 𝑡 → ((𝑥𝑝𝑝𝑜) ↔ (𝑥𝑡𝑡𝑜)))
3130rspcev 3608 . . . . . . . . . . . . . 14 ((𝑡 ∈ {𝑞𝑏𝑥𝑞} ∧ (𝑥𝑡𝑡𝑜)) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3226, 27, 31syl2an2 684 . . . . . . . . . . . . 13 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3332rexlimdvaa 3146 . . . . . . . . . . . 12 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∃𝑡𝑏 (𝑥𝑡𝑡𝑜) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
3421, 33syl9r 78 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3517, 34sylbid 239 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3635ralrimiv 3135 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
37 breq1 5156 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (𝑠 ≼ ω ↔ {𝑞𝑏𝑥𝑞} ≼ ω))
38 rexeq 3311 . . . . . . . . . . . . 13 (𝑠 = {𝑞𝑏𝑥𝑞} → (∃𝑝𝑠 (𝑥𝑝𝑝𝑜) ↔ ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
3938imbi2d 339 . . . . . . . . . . . 12 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4039ralbidv 3168 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4137, 40anbi12d 630 . . . . . . . . . 10 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))))
4241rspcev 3608 . . . . . . . . 9 (({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ∧ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
439, 15, 36, 42syl12anc 835 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
44433expia 1118 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
45 unieq 4924 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
4645eleq2d 2812 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (𝑥 (topGen‘𝑏) ↔ 𝑥 𝐽))
47 pweq 4621 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → 𝒫 (topGen‘𝑏) = 𝒫 𝐽)
48 raleq 3312 . . . . . . . . . 10 ((topGen‘𝑏) = 𝐽 → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
4948anbi2d 628 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ (𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5047, 49rexeqbidv 3331 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5146, 50imbi12d 343 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → ((𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))) ↔ (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5244, 51syl5ibcom 244 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5352expimpd 452 . . . . 5 (𝑏 ∈ TopBases → ((𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5453rexlimiv 3138 . . . 4 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
552, 54sylbi 216 . . 3 (𝐽 ∈ 2ndω → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5655ralrimiv 3135 . 2 (𝐽 ∈ 2ndω → ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
57 eqid 2726 . . 3 𝐽 = 𝐽
5857is1stc2 23437 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
591, 56, 58sylanbrc 581 1 (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3947  𝒫 cpw 4607   cuni 4913   class class class wbr 5153  cfv 6554  ωcom 7876  cdom 8972  topGenctg 17452  Topctop 22886  TopBasesctb 22939  1stωc1stc 23432  2ndωc2ndc 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-dom 8976  df-topgen 17458  df-top 22887  df-bases 22940  df-1stc 23434  df-2ndc 23435
This theorem is referenced by:  dis1stc  23494
  Copyright terms: Public domain W3C validator