MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conndisj Structured version   Visualization version   GIF version

Theorem conndisj 22024
Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
isconn.1 𝑋 = 𝐽
connclo.1 (𝜑𝐽 ∈ Conn)
connclo.2 (𝜑𝐴𝐽)
connclo.3 (𝜑𝐴 ≠ ∅)
conndisj.4 (𝜑𝐵𝐽)
conndisj.5 (𝜑𝐵 ≠ ∅)
conndisj.6 (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
conndisj (𝜑 → (𝐴𝐵) ≠ 𝑋)

Proof of Theorem conndisj
StepHypRef Expression
1 connclo.3 . 2 (𝜑𝐴 ≠ ∅)
2 connclo.2 . . . . . . 7 (𝜑𝐴𝐽)
3 elssuni 4868 . . . . . . 7 (𝐴𝐽𝐴 𝐽)
42, 3syl 17 . . . . . 6 (𝜑𝐴 𝐽)
5 isconn.1 . . . . . 6 𝑋 = 𝐽
64, 5sseqtrrdi 4018 . . . . 5 (𝜑𝐴𝑋)
7 conndisj.6 . . . . 5 (𝜑 → (𝐴𝐵) = ∅)
8 uneqdifeq 4438 . . . . 5 ((𝐴𝑋 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝑋 ↔ (𝑋𝐴) = 𝐵))
96, 7, 8syl2anc 586 . . . 4 (𝜑 → ((𝐴𝐵) = 𝑋 ↔ (𝑋𝐴) = 𝐵))
10 simpr 487 . . . . . . 7 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐴) = 𝐵)
1110difeq2d 4099 . . . . . 6 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋 ∖ (𝑋𝐴)) = (𝑋𝐵))
12 dfss4 4235 . . . . . . . 8 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
136, 12sylib 220 . . . . . . 7 (𝜑 → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
1413adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
15 connclo.1 . . . . . . . . . 10 (𝜑𝐽 ∈ Conn)
1615adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐽 ∈ Conn)
17 conndisj.4 . . . . . . . . . 10 (𝜑𝐵𝐽)
1817adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵𝐽)
19 conndisj.5 . . . . . . . . . 10 (𝜑𝐵 ≠ ∅)
2019adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵 ≠ ∅)
215isconn 22021 . . . . . . . . . . . . . 14 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
2221simplbi 500 . . . . . . . . . . . . 13 (𝐽 ∈ Conn → 𝐽 ∈ Top)
2315, 22syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
245opncld 21641 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝑋𝐴) ∈ (Clsd‘𝐽))
2523, 2, 24syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑋𝐴) ∈ (Clsd‘𝐽))
2625adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐴) ∈ (Clsd‘𝐽))
2710, 26eqeltrrd 2914 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵 ∈ (Clsd‘𝐽))
285, 16, 18, 20, 27connclo 22023 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵 = 𝑋)
2928difeq2d 4099 . . . . . . 7 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐵) = (𝑋𝑋))
30 difid 4330 . . . . . . 7 (𝑋𝑋) = ∅
3129, 30syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐵) = ∅)
3211, 14, 313eqtr3d 2864 . . . . 5 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐴 = ∅)
3332ex 415 . . . 4 (𝜑 → ((𝑋𝐴) = 𝐵𝐴 = ∅))
349, 33sylbid 242 . . 3 (𝜑 → ((𝐴𝐵) = 𝑋𝐴 = ∅))
3534necon3d 3037 . 2 (𝜑 → (𝐴 ≠ ∅ → (𝐴𝐵) ≠ 𝑋))
361, 35mpd 15 1 (𝜑 → (𝐴𝐵) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {cpr 4569   cuni 4838  cfv 6355  Topctop 21501  Clsdccld 21624  Conncconn 22019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-top 21502  df-cld 21627  df-conn 22020
This theorem is referenced by:  dfconn2  22027
  Copyright terms: Public domain W3C validator