![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq2 4739 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: opeq2 4879 opthwiener 5524 fprg 7175 fprb 7214 fnprb 7228 fnpr2g 7230 opthreg 9656 fzosplitprm1 13813 s2prop 14943 gsumprval 18714 indislem 23023 isconn 23437 hmphindis 23821 wilthlem2 27127 ispth 29756 wwlksnredwwlkn 29925 wwlksnextfun 29928 wwlksnextinj 29929 wwlksnextsurj 29930 wwlksnextbij 29932 clwlkclwwlklem2a1 30021 clwlkclwwlklem2a4 30026 clwlkclwwlklem2 30029 clwwisshclwwslemlem 30042 clwwlkn2 30073 clwwlkf 30076 clwwlknonex2lem1 30136 eupth2lem3lem3 30259 eupth2 30268 frcond1 30295 nfrgr2v 30301 frgr3v 30304 n4cyclfrgr 30320 measxun2 34191 altopthsn 35943 mapdindp4 41706 clnbgrgrimlem 47839 gpgov 47937 2arymaptf1 48503 rrx2xpref1o 48568 |
Copyright terms: Public domain | W3C validator |