| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq2 4715 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: opeq2 4855 opthwiener 5494 fprg 7150 fprb 7191 fnprb 7205 fnpr2g 7207 opthreg 9637 fzosplitprm1 13798 s2prop 14931 gsumprval 18671 indislem 22943 isconn 23356 hmphindis 23740 wilthlem2 27036 ispth 29708 wwlksnredwwlkn 29882 wwlksnextfun 29885 wwlksnextinj 29886 wwlksnextsurj 29887 wwlksnextbij 29889 clwlkclwwlklem2a1 29978 clwlkclwwlklem2a4 29983 clwlkclwwlklem2 29986 clwwisshclwwslemlem 29999 clwwlkn2 30030 clwwlkf 30033 clwwlknonex2lem1 30093 eupth2lem3lem3 30216 eupth2 30225 frcond1 30252 nfrgr2v 30258 frgr3v 30261 n4cyclfrgr 30277 measxun2 34246 altopthsn 35984 mapdindp4 41747 clnbgrgrimlem 47913 gpgov 48013 gpgprismgriedgdmss 48023 gpg3kgrtriexlem6 48057 gpgprismgr4cycllem3 48063 2arymaptf1 48600 rrx2xpref1o 48665 |
| Copyright terms: Public domain | W3C validator |