![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq2 4759 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: opeq2 4898 opthwiener 5533 fprg 7189 fprb 7231 fnprb 7245 fnpr2g 7247 opthreg 9687 fzosplitprm1 13827 s2prop 14956 gsumprval 18726 indislem 23028 isconn 23442 hmphindis 23826 wilthlem2 27130 ispth 29759 wwlksnredwwlkn 29928 wwlksnextfun 29931 wwlksnextinj 29932 wwlksnextsurj 29933 wwlksnextbij 29935 clwlkclwwlklem2a1 30024 clwlkclwwlklem2a4 30029 clwlkclwwlklem2 30032 clwwisshclwwslemlem 30045 clwwlkn2 30076 clwwlkf 30079 clwwlknonex2lem1 30139 eupth2lem3lem3 30262 eupth2 30271 frcond1 30298 nfrgr2v 30304 frgr3v 30307 n4cyclfrgr 30323 measxun2 34174 altopthsn 35925 mapdindp4 41680 clnbgrgrimlem 47785 2arymaptf1 48387 rrx2xpref1o 48452 |
Copyright terms: Public domain | W3C validator |