Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq2 4667 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: opeq2 4802 opthwiener 5422 fprg 7009 fprb 7051 fnprb 7066 fnpr2g 7068 opthreg 9306 fzosplitprm1 13425 s2prop 14548 gsumprval 18287 indislem 22058 isconn 22472 hmphindis 22856 wilthlem2 26123 ispth 27992 wwlksnredwwlkn 28161 wwlksnextfun 28164 wwlksnextinj 28165 wwlksnextsurj 28166 wwlksnextbij 28168 clwlkclwwlklem2a1 28257 clwlkclwwlklem2a4 28262 clwlkclwwlklem2 28265 clwwisshclwwslemlem 28278 clwwlkn2 28309 clwwlkf 28312 clwwlknonex2lem1 28372 eupth2lem3lem3 28495 eupth2 28504 frcond1 28531 nfrgr2v 28537 frgr3v 28540 n4cyclfrgr 28556 measxun2 32078 altopthsn 34190 mapdindp4 39664 isomuspgrlem2d 45171 2arymaptf1 45887 rrx2xpref1o 45952 |
Copyright terms: Public domain | W3C validator |