![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq2 4730 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 {cpr 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3945 df-sn 4621 df-pr 4623 |
This theorem is referenced by: opeq2 4866 opthwiener 5504 fprg 7145 fprb 7187 fnprb 7201 fnpr2g 7203 opthreg 9609 fzosplitprm1 13739 s2prop 14855 gsumprval 18611 indislem 22825 isconn 23239 hmphindis 23623 wilthlem2 26917 ispth 29449 wwlksnredwwlkn 29618 wwlksnextfun 29621 wwlksnextinj 29622 wwlksnextsurj 29623 wwlksnextbij 29625 clwlkclwwlklem2a1 29714 clwlkclwwlklem2a4 29719 clwlkclwwlklem2 29722 clwwisshclwwslemlem 29735 clwwlkn2 29766 clwwlkf 29769 clwwlknonex2lem1 29829 eupth2lem3lem3 29952 eupth2 29961 frcond1 29988 nfrgr2v 29994 frgr3v 29997 n4cyclfrgr 30013 measxun2 33697 altopthsn 35428 mapdindp4 41084 isomuspgrlem2d 46984 2arymaptf1 47527 rrx2xpref1o 47592 |
Copyright terms: Public domain | W3C validator |