| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq2 4688 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: opeq2 4828 opthwiener 5461 fprg 7093 fprb 7134 fnprb 7148 fnpr2g 7150 opthreg 9533 fzosplitprm1 13698 s2prop 14832 gsumprval 18580 indislem 22903 isconn 23316 hmphindis 23700 wilthlem2 26995 ispth 29684 wwlksnredwwlkn 29858 wwlksnextfun 29861 wwlksnextinj 29862 wwlksnextsurj 29863 wwlksnextbij 29865 clwlkclwwlklem2a1 29954 clwlkclwwlklem2a4 29959 clwlkclwwlklem2 29962 clwwisshclwwslemlem 29975 clwwlkn2 30006 clwwlkf 30009 clwwlknonex2lem1 30069 eupth2lem3lem3 30192 eupth2 30201 frcond1 30228 nfrgr2v 30234 frgr3v 30237 n4cyclfrgr 30253 measxun2 34176 altopthsn 35934 mapdindp4 41702 clnbgrgrimlem 47918 gpgov 48027 gpgprismgriedgdmss 48037 gpgedg2ov 48051 gpgedg2iv 48052 gpg3kgrtriexlem6 48073 gpgprismgr4cycllem3 48082 grlimedgnedg 48116 2arymaptf1 48639 rrx2xpref1o 48704 |
| Copyright terms: Public domain | W3C validator |