| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq2 4686 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cpr 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: opeq2 4825 opthwiener 5457 fprg 7094 fprb 7134 fnprb 7148 fnpr2g 7150 opthreg 9515 fzosplitprm1 13680 s2prop 14816 chnccat 18534 gsumprval 18598 indislem 22916 isconn 23329 hmphindis 23713 wilthlem2 27007 ispth 29701 wwlksnredwwlkn 29875 wwlksnextfun 29878 wwlksnextinj 29879 wwlksnextsurj 29880 wwlksnextbij 29882 clwlkclwwlklem2a1 29974 clwlkclwwlklem2a4 29979 clwlkclwwlklem2 29982 clwwisshclwwslemlem 29995 clwwlkn2 30026 clwwlkf 30029 clwwlknonex2lem1 30089 eupth2lem3lem3 30212 eupth2 30221 frcond1 30248 nfrgr2v 30254 frgr3v 30257 n4cyclfrgr 30273 measxun2 34244 altopthsn 36026 mapdindp4 41843 clnbgrgrimlem 48058 gpgov 48167 gpgprismgriedgdmss 48177 gpgedg2ov 48191 gpgedg2iv 48192 gpg3kgrtriexlem6 48213 gpgprismgr4cycllem3 48222 grlimedgnedg 48256 2arymaptf1 48779 rrx2xpref1o 48844 |
| Copyright terms: Public domain | W3C validator |