| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq2 4698 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: opeq2 4838 opthwiener 5474 fprg 7127 fprb 7168 fnprb 7182 fnpr2g 7184 opthreg 9571 fzosplitprm1 13738 s2prop 14873 gsumprval 18615 indislem 22887 isconn 23300 hmphindis 23684 wilthlem2 26979 ispth 29651 wwlksnredwwlkn 29825 wwlksnextfun 29828 wwlksnextinj 29829 wwlksnextsurj 29830 wwlksnextbij 29832 clwlkclwwlklem2a1 29921 clwlkclwwlklem2a4 29926 clwlkclwwlklem2 29929 clwwisshclwwslemlem 29942 clwwlkn2 29973 clwwlkf 29976 clwwlknonex2lem1 30036 eupth2lem3lem3 30159 eupth2 30168 frcond1 30195 nfrgr2v 30201 frgr3v 30204 n4cyclfrgr 30220 measxun2 34200 altopthsn 35949 mapdindp4 41717 clnbgrgrimlem 47930 gpgov 48030 gpgprismgriedgdmss 48040 gpgedg2ov 48054 gpgedg2iv 48055 gpg3kgrtriexlem6 48076 gpgprismgr4cycllem3 48084 2arymaptf1 48639 rrx2xpref1o 48704 |
| Copyright terms: Public domain | W3C validator |