| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq2d | ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq2 4687 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: opeq2 4826 opthwiener 5454 fprg 7088 fprb 7128 fnprb 7142 fnpr2g 7144 opthreg 9508 fzosplitprm1 13675 s2prop 14811 chnccat 18529 gsumprval 18593 indislem 22913 isconn 23326 hmphindis 23710 wilthlem2 27004 ispth 29697 wwlksnredwwlkn 29871 wwlksnextfun 29874 wwlksnextinj 29875 wwlksnextsurj 29876 wwlksnextbij 29878 clwlkclwwlklem2a1 29967 clwlkclwwlklem2a4 29972 clwlkclwwlklem2 29975 clwwisshclwwslemlem 29988 clwwlkn2 30019 clwwlkf 30022 clwwlknonex2lem1 30082 eupth2lem3lem3 30205 eupth2 30214 frcond1 30241 nfrgr2v 30247 frgr3v 30250 n4cyclfrgr 30266 measxun2 34218 altopthsn 35994 mapdindp4 41761 clnbgrgrimlem 47963 gpgov 48072 gpgprismgriedgdmss 48082 gpgedg2ov 48096 gpgedg2iv 48097 gpg3kgrtriexlem6 48118 gpgprismgr4cycllem3 48127 grlimedgnedg 48161 2arymaptf1 48684 rrx2xpref1o 48749 |
| Copyright terms: Public domain | W3C validator |