| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isconn2 | Structured version Visualization version GIF version | ||
| Description: The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isconn2 | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isconn 23326 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| 3 | eqss 3950 | . . . 4 ⊢ ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))) | |
| 4 | 0opn 22817 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 5 | 0cld 22951 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
| 6 | 4, 5 | elind 4150 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ∩ (Clsd‘𝐽))) |
| 7 | 1 | topopn 22819 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 8 | 1 | topcld 22948 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 9 | 7, 8 | elind 4150 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
| 10 | 6, 9 | prssd 4774 | . . . . 5 ⊢ (𝐽 ∈ Top → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))) |
| 11 | 10 | biantrud 531 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))))) |
| 12 | 3, 11 | bitr4id 290 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
| 13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
| 14 | 2, 13 | bitri 275 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {cpr 4578 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 Clsdccld 22929 Conncconn 23324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22807 df-cld 22932 df-conn 23325 |
| This theorem is referenced by: indisconn 23331 dfconn2 23332 cnconn 23335 txconn 23602 filconn 23796 onsucconni 36470 |
| Copyright terms: Public domain | W3C validator |