MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconn2 Structured version   Visualization version   GIF version

Theorem isconn2 23317
Description: The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
isconn.1 𝑋 = 𝐽
Assertion
Ref Expression
isconn2 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))

Proof of Theorem isconn2
StepHypRef Expression
1 isconn.1 . . 3 𝑋 = 𝐽
21isconn 23316 . 2 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
3 eqss 3953 . . . 4 ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))))
4 0opn 22807 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5 0cld 22941 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
64, 5elind 4153 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ (𝐽 ∩ (Clsd‘𝐽)))
71topopn 22809 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
81topcld 22938 . . . . . . 7 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
97, 8elind 4153 . . . . . 6 (𝐽 ∈ Top → 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽)))
106, 9prssd 4776 . . . . 5 (𝐽 ∈ Top → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))
1110biantrud 531 . . . 4 (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))))
123, 11bitr4id 290 . . 3 (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
1312pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
142, 13bitri 275 1 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3904  wss 3905  c0 4286  {cpr 4581   cuni 4861  cfv 6486  Topctop 22796  Clsdccld 22919  Conncconn 23314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-top 22797  df-cld 22922  df-conn 23315
This theorem is referenced by:  indisconn  23321  dfconn2  23322  cnconn  23325  txconn  23592  filconn  23786  onsucconni  36410
  Copyright terms: Public domain W3C validator