MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconn2 Structured version   Visualization version   GIF version

Theorem isconn2 23327
Description: The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
isconn.1 𝑋 = 𝐽
Assertion
Ref Expression
isconn2 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))

Proof of Theorem isconn2
StepHypRef Expression
1 isconn.1 . . 3 𝑋 = 𝐽
21isconn 23326 . 2 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
3 eqss 3950 . . . 4 ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))))
4 0opn 22817 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5 0cld 22951 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
64, 5elind 4150 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ (𝐽 ∩ (Clsd‘𝐽)))
71topopn 22819 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
81topcld 22948 . . . . . . 7 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
97, 8elind 4150 . . . . . 6 (𝐽 ∈ Top → 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽)))
106, 9prssd 4774 . . . . 5 (𝐽 ∈ Top → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))
1110biantrud 531 . . . 4 (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))))
123, 11bitr4id 290 . . 3 (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
1312pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
142, 13bitri 275 1 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3901  wss 3902  c0 4283  {cpr 4578   cuni 4859  cfv 6481  Topctop 22806  Clsdccld 22929  Conncconn 23324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-top 22807  df-cld 22932  df-conn 23325
This theorem is referenced by:  indisconn  23331  dfconn2  23332  cnconn  23335  txconn  23602  filconn  23796  onsucconni  36470
  Copyright terms: Public domain W3C validator