Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isconn2 | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isconn2 | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isconn.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isconn 22564 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
3 | eqss 3936 | . . . 4 ⊢ ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))) | |
4 | 0opn 22053 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
5 | 0cld 22189 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
6 | 4, 5 | elind 4128 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ∩ (Clsd‘𝐽))) |
7 | 1 | topopn 22055 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | 1 | topcld 22186 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
9 | 7, 8 | elind 4128 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
10 | 6, 9 | prssd 4755 | . . . . 5 ⊢ (𝐽 ∈ Top → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))) |
11 | 10 | biantrud 532 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))))) |
12 | 3, 11 | bitr4id 290 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
13 | 12 | pm5.32i 575 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
14 | 2, 13 | bitri 274 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {cpr 4563 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 Clsdccld 22167 Conncconn 22562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-top 22043 df-cld 22170 df-conn 22563 |
This theorem is referenced by: indisconn 22569 dfconn2 22570 cnconn 22573 txconn 22840 filconn 23034 onsucconni 34626 |
Copyright terms: Public domain | W3C validator |