MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconn2 Structured version   Visualization version   GIF version

Theorem isconn2 23330
Description: The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
isconn.1 𝑋 = 𝐽
Assertion
Ref Expression
isconn2 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))

Proof of Theorem isconn2
StepHypRef Expression
1 isconn.1 . . 3 𝑋 = 𝐽
21isconn 23329 . 2 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
3 eqss 3946 . . . 4 ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))))
4 0opn 22820 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5 0cld 22954 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
64, 5elind 4149 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ (𝐽 ∩ (Clsd‘𝐽)))
71topopn 22822 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
81topcld 22951 . . . . . . 7 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
97, 8elind 4149 . . . . . 6 (𝐽 ∈ Top → 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽)))
106, 9prssd 4773 . . . . 5 (𝐽 ∈ Top → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))
1110biantrud 531 . . . 4 (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))))
123, 11bitr4id 290 . . 3 (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
1312pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
142, 13bitri 275 1 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  cin 3897  wss 3898  c0 4282  {cpr 4577   cuni 4858  cfv 6486  Topctop 22809  Clsdccld 22932  Conncconn 23327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-top 22810  df-cld 22935  df-conn 23328
This theorem is referenced by:  indisconn  23334  dfconn2  23335  cnconn  23338  txconn  23605  filconn  23799  onsucconni  36502
  Copyright terms: Public domain W3C validator