Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isconn2 | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isconn2 | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isconn.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isconn 22562 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
3 | eqss 3941 | . . . 4 ⊢ ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽)))) | |
4 | 0opn 22051 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
5 | 0cld 22187 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
6 | 4, 5 | elind 4133 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ∩ (Clsd‘𝐽))) |
7 | 1 | topopn 22053 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | 1 | topcld 22184 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
9 | 7, 8 | elind 4133 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
10 | 6, 9 | prssd 4761 | . . . . 5 ⊢ (𝐽 ∈ Top → {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))) |
11 | 10 | biantrud 532 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ↔ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋} ∧ {∅, 𝑋} ⊆ (𝐽 ∩ (Clsd‘𝐽))))) |
12 | 3, 11 | bitr4id 290 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋} ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
13 | 12 | pm5.32i 575 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
14 | 2, 13 | bitri 274 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 {cpr 4569 ∪ cuni 4845 ‘cfv 6432 Topctop 22040 Clsdccld 22165 Conncconn 22560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-top 22041 df-cld 22168 df-conn 22561 |
This theorem is referenced by: indisconn 22567 dfconn2 22568 cnconn 22571 txconn 22838 filconn 23032 onsucconni 34622 |
Copyright terms: Public domain | W3C validator |