![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > connclo | Structured version Visualization version GIF version |
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
connclo.1 | ⊢ (𝜑 → 𝐽 ∈ Conn) |
connclo.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
connclo.3 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
connclo.4 | ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
connclo | ⊢ (𝜑 → 𝐴 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connclo.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | 1 | neneqd 2951 | . 2 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
3 | connclo.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
4 | connclo.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | |
5 | 3, 4 | elind 4223 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
6 | connclo.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
7 | isconn.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | isconn 23442 | . . . . . . 7 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
9 | 8 | simprbi 496 | . . . . . 6 ⊢ (𝐽 ∈ Conn → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
11 | 5, 10 | eleqtrd 2846 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ {∅, 𝑋}) |
12 | elpri 4671 | . . . 4 ⊢ (𝐴 ∈ {∅, 𝑋} → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) |
14 | 13 | ord 863 | . 2 ⊢ (𝜑 → (¬ 𝐴 = ∅ → 𝐴 = 𝑋)) |
15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 {cpr 4650 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 Conncconn 23440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-conn 23441 |
This theorem is referenced by: conndisj 23445 cnconn 23451 connsubclo 23453 t1connperf 23465 txconn 23718 connpconn 35203 cvmliftmolem2 35250 cvmlift2lem12 35282 mblfinlem1 37617 |
Copyright terms: Public domain | W3C validator |