MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connclo Structured version   Visualization version   GIF version

Theorem connclo 23330
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
isconn.1 𝑋 = 𝐽
connclo.1 (𝜑𝐽 ∈ Conn)
connclo.2 (𝜑𝐴𝐽)
connclo.3 (𝜑𝐴 ≠ ∅)
connclo.4 (𝜑𝐴 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
connclo (𝜑𝐴 = 𝑋)

Proof of Theorem connclo
StepHypRef Expression
1 connclo.3 . . 3 (𝜑𝐴 ≠ ∅)
21neneqd 2933 . 2 (𝜑 → ¬ 𝐴 = ∅)
3 connclo.2 . . . . . 6 (𝜑𝐴𝐽)
4 connclo.4 . . . . . 6 (𝜑𝐴 ∈ (Clsd‘𝐽))
53, 4elind 4147 . . . . 5 (𝜑𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)))
6 connclo.1 . . . . . 6 (𝜑𝐽 ∈ Conn)
7 isconn.1 . . . . . . . 8 𝑋 = 𝐽
87isconn 23328 . . . . . . 7 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
98simprbi 496 . . . . . 6 (𝐽 ∈ Conn → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})
106, 9syl 17 . . . . 5 (𝜑 → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})
115, 10eleqtrd 2833 . . . 4 (𝜑𝐴 ∈ {∅, 𝑋})
12 elpri 4597 . . . 4 (𝐴 ∈ {∅, 𝑋} → (𝐴 = ∅ ∨ 𝐴 = 𝑋))
1311, 12syl 17 . . 3 (𝜑 → (𝐴 = ∅ ∨ 𝐴 = 𝑋))
1413ord 864 . 2 (𝜑 → (¬ 𝐴 = ∅ → 𝐴 = 𝑋))
152, 14mpd 15 1 (𝜑𝐴 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1541  wcel 2111  wne 2928  cin 3896  c0 4280  {cpr 4575   cuni 4856  cfv 6481  Topctop 22808  Clsdccld 22931  Conncconn 23326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-conn 23327
This theorem is referenced by:  conndisj  23331  cnconn  23337  connsubclo  23339  t1connperf  23351  txconn  23604  connpconn  35279  cvmliftmolem2  35326  cvmlift2lem12  35358  mblfinlem1  37707
  Copyright terms: Public domain W3C validator