Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > connclo | Structured version Visualization version GIF version |
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
connclo.1 | ⊢ (𝜑 → 𝐽 ∈ Conn) |
connclo.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
connclo.3 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
connclo.4 | ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
connclo | ⊢ (𝜑 → 𝐴 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connclo.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | 1 | neneqd 2947 | . 2 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
3 | connclo.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
4 | connclo.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | |
5 | 3, 4 | elind 4124 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
6 | connclo.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
7 | isconn.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | isconn 22472 | . . . . . . 7 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
9 | 8 | simprbi 496 | . . . . . 6 ⊢ (𝐽 ∈ Conn → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
11 | 5, 10 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ {∅, 𝑋}) |
12 | elpri 4580 | . . . 4 ⊢ (𝐴 ∈ {∅, 𝑋} → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) |
14 | 13 | ord 860 | . 2 ⊢ (𝜑 → (¬ 𝐴 = ∅ → 𝐴 = 𝑋)) |
15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 {cpr 4560 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 Clsdccld 22075 Conncconn 22470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-conn 22471 |
This theorem is referenced by: conndisj 22475 cnconn 22481 connsubclo 22483 t1connperf 22495 txconn 22748 connpconn 33097 cvmliftmolem2 33144 cvmlift2lem12 33176 mblfinlem1 35741 |
Copyright terms: Public domain | W3C validator |