| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connclo | Structured version Visualization version GIF version | ||
| Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| connclo.1 | ⊢ (𝜑 → 𝐽 ∈ Conn) |
| connclo.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| connclo.3 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| connclo.4 | ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| connclo | ⊢ (𝜑 → 𝐴 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connclo.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | 1 | neneqd 2936 | . 2 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
| 3 | connclo.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
| 4 | connclo.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | |
| 5 | 3, 4 | elind 4180 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
| 6 | connclo.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
| 7 | isconn.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | isconn 23368 | . . . . . . 7 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| 9 | 8 | simprbi 496 | . . . . . 6 ⊢ (𝐽 ∈ Conn → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
| 10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
| 11 | 5, 10 | eleqtrd 2835 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ {∅, 𝑋}) |
| 12 | elpri 4629 | . . . 4 ⊢ (𝐴 ∈ {∅, 𝑋} → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) |
| 14 | 13 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝐴 = ∅ → 𝐴 = 𝑋)) |
| 15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∩ cin 3930 ∅c0 4313 {cpr 4608 ∪ cuni 4887 ‘cfv 6541 Topctop 22848 Clsdccld 22971 Conncconn 23366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-conn 23367 |
| This theorem is referenced by: conndisj 23371 cnconn 23377 connsubclo 23379 t1connperf 23391 txconn 23644 connpconn 35215 cvmliftmolem2 35262 cvmlift2lem12 35294 mblfinlem1 37639 |
| Copyright terms: Public domain | W3C validator |