MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connclo Structured version   Visualization version   GIF version

Theorem connclo 22474
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
isconn.1 𝑋 = 𝐽
connclo.1 (𝜑𝐽 ∈ Conn)
connclo.2 (𝜑𝐴𝐽)
connclo.3 (𝜑𝐴 ≠ ∅)
connclo.4 (𝜑𝐴 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
connclo (𝜑𝐴 = 𝑋)

Proof of Theorem connclo
StepHypRef Expression
1 connclo.3 . . 3 (𝜑𝐴 ≠ ∅)
21neneqd 2947 . 2 (𝜑 → ¬ 𝐴 = ∅)
3 connclo.2 . . . . . 6 (𝜑𝐴𝐽)
4 connclo.4 . . . . . 6 (𝜑𝐴 ∈ (Clsd‘𝐽))
53, 4elind 4124 . . . . 5 (𝜑𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)))
6 connclo.1 . . . . . 6 (𝜑𝐽 ∈ Conn)
7 isconn.1 . . . . . . . 8 𝑋 = 𝐽
87isconn 22472 . . . . . . 7 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
98simprbi 496 . . . . . 6 (𝐽 ∈ Conn → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})
106, 9syl 17 . . . . 5 (𝜑 → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})
115, 10eleqtrd 2841 . . . 4 (𝜑𝐴 ∈ {∅, 𝑋})
12 elpri 4580 . . . 4 (𝐴 ∈ {∅, 𝑋} → (𝐴 = ∅ ∨ 𝐴 = 𝑋))
1311, 12syl 17 . . 3 (𝜑 → (𝐴 = ∅ ∨ 𝐴 = 𝑋))
1413ord 860 . 2 (𝜑 → (¬ 𝐴 = ∅ → 𝐴 = 𝑋))
152, 14mpd 15 1 (𝜑𝐴 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843   = wceq 1539  wcel 2108  wne 2942  cin 3882  c0 4253  {cpr 4560   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075  Conncconn 22470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-conn 22471
This theorem is referenced by:  conndisj  22475  cnconn  22481  connsubclo  22483  t1connperf  22495  txconn  22748  connpconn  33097  cvmliftmolem2  33144  cvmlift2lem12  33176  mblfinlem1  35741
  Copyright terms: Public domain W3C validator